
An Approach for Requirements Engineering

for Software Library-Components and Patterns

to be Reused in and across Product Lines

Dr. Jens Liebehenschel

Dirk Herrmann



About

• System- and Software-Engineering

� Architecture development and analysis

• Consulting

� Method development

° Architecture and product line approaches

° Scoping

• Training



Contents

• Classification

• Motivation

• Situation

• Approach

• Success Story



Classification

• Method developed and applied in practice

� Requirements engineering

� Requirements documentation

• Development 

� Assets to be used in different contexts

° Software components 

° Patterns



Motivation

• No lightweight approach for given situation 
available

� Method

� Tools

� Templates



Our Situation

• Assets to be developed and substituted

� Reuse across product lines necessary

� Asset scope roughly known

� Detailed asset requirements not known

� No standardized interfaces

� Not necessarily one solution for all projects



One Project

Project requirements

Library requirements

Break-down project requirements to library 
requirements during development



Several Projects

Project 1
requirements

Library 
requirements

Project n
requirements



Library
requirements

Our Situation – Several Product Lines

Product line 1 requirements Product line n requirements



Challenges

• Technical

� Asset scope not completely defined

� Interfaces are subject to design decisions

� Variability in the product lines

• Non-technical

� Economical optimum 
under consideration of

° Development and test

° Configuration and integration



Possible Approach

• Synchronize product lines’ requirements

� Variability 

� Internal interfaces

� Behavior of internal components

Very difficult!



Our Approach

• Identification of the variability

• Definition of the asset scope

� Agreement on useful set of requirements 

� Structure and functionality that fits to most 
product lines / projects

Keep it simple!



Approach – Interviews 

• Interviews with stakeholders

� Documentation grows

• Rules for interviews

� Elicit real requirements – Why? Why? Why?

� Negotiation

° Important features

° Prioritization



Approach – Documentation

Process issues
Parameterized 
requirements

Superset of 
requirements

Configuration 
management

Usage profile
forms

Constraints vs. 
solution ideas

Requirement
fulfillment

Cross
references /
traceability

Freedom for the 
design phase



Superset of Requirements

Content

� Requirements from all potential projects

° Requirements in the close environment of the asset

° Contradictive requirements

° Solutions

° Constraints

° Potential future requirements

° Non-requirements

� Assignment to the projects



Superset of Requirements

Superset of 
requirements

Documentation

Code



Parameterized Requirements



• Criteria for abstraction

� Common sense

� Language and abstraction of projects

• Benefits

� Elimination of redundancy

� Fewer requirements

� Overview on variability

Parameterized Requirements

+

+

+



Parameterized Requirements

Requirement Project A Project B

The function shall be usable within 
{left hand drive cars, right hand drive 
cars, both}.

Both
Left hand 
drive cars

The driver's side shall be determined 
at the time of {build, system 
manufacturing, car manufacturing, 
system boot}.

System boot 
time

Build time

The response time of the function 
shall be below {time}.

below 500ms, 
but not smaller 

than 100ms
250ms



• Extension of the aspect 
“Parameterized Requirements”

• Usage profile forms 

� Filled out by each project

� For fine grained information

• Example

� Properties of data to be stored persistently

Project n

Asset Specific Usage Profile Forms

Project 1



Asset Specific Usage Profile Forms

• Benefits

� Good overview

� Trend available, even if the information slightly 
changes during development

+

+



• Classes of “requirements”

� Requirements

� Solutions

� Constraints

Constraints vs. Solution Ideas

Solution space

Problem space



Constraints vs. Solution Ideas

• Are solution concepts requirements?

1. Underlying requirements difficult to express

° Solutions were kept as ideas for the design

° Real requirements were connected to the solutions

2. Certain solutions are demanded / excluded

° Solutions become constraints



Freedom for the Design Phase

Requirement Project A Project B

The component shall be usable in an 
environment without preemptive 
scheduling.

Yes No

If any input signal is unavailable, then 
the component shall not influence the 
actuators.

Yes
Yes, but also if 

signal x is 
unavailable

If any input signal is unavailable, then 
the component shall make this visible to 
the error memory unit.

Yes



Freedom for the Design Phase

Project 1

a=42

Project 2

Project 1

Project 2a=24

Project 1 Project 2

• Configurable library• Common library
for different projects

• Different libraries for different projects



Freedom for the Design Phase

• Customizable set of library elements

� Integration by the projects – based on 
requirements

• Combination of the approaches

Project 1

Project 2



Fulfilling requirements vs. 
supporting fulfillment

• Not all requirements of all systems have to 
be fulfilled by the library

� but they shall be satisfiable, e.g. by adding some 
additional functionality

Project 1

Project 2

Project 3



Retrospect on the Methodology

• Agile approach

� Method was developed and applied in parallel

� Patterns were applied to design the approach

° Separation of concerns

° Abstraction

° Keep it simple

� Structure of the documentation was improved 
continuously

° Requirements documents

° Usage profile forms



Success Story

• Benefits of the approach

� Communication with stakeholders and designers

� Overview commonalities and variability

� No unnecessary restriction of the design space

� Transfer of know-how between projects

� Questionnaires for future projects

� Lightweight approach

+

+

+

+

+

+



Success Story

• Approach successfully applied to some

� Library components

° Development of new software component

° Substitution of several implementations by one 
solution

° Redesign of existing libraries

� Patterns

° Development of reusable patterns



Success Story

• One example: SW library

� Shortly after design and implementation used in 
17 projects belonging to 7 product lines

� No problems in the field until now



Thank you!


