
Copyright © Siemens AG, Corporate Technology, 2008. All rights reserved.

Corporate Technology

Formal Model Verification in the
Industrial Software Engineering

Erwin Reyzl, Siemens AG, Corporate Technology
Vladimir Okulevich, Siemens Russia, Corporate Technology

Software Workhop
“Efficient Development of Reliable Software and Related Methods”
Karlsruhe, Germany
24th January 2008

Page 2 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Dependable Software and Siemens Products

All Siemens Divisions develop
and sell products that perform
mission-critical operations.

Most of these products contain an
ever increasing software part.

Dependability is decisive for our
commercial success.

Dependability yields higher
confidence and acceptance, and
is pre-condition to market access.

Following engineering standards
gives evidence of a product‘s
quality and trustworthiness.

Dependability relies on an
integral management &
engineering approach.

Dependability of a computing system is the ability to
deliver services that can justifiably be trusted.

Ref. : A. Avizieniz, J.-C. Laprie, B. Randell: Fundamental Concepts of Dependability

ReliabilityAvailability

Safety

Dependability
Management & Engineering

Integrity

Maintainability

Confidentiality

Page 3 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Dependability Competence Team at Siemens Corporate Technology

Berkeley, CA Roke Manor, Romsey

Berlin

Erlangen

Tokyo

München Perlach

Princeton, NJ
Beijing

Bangalore

St. Petersburg

Moscow

CT SE 1
Development
Techniques

CT SE 1
Development
Techniques

CT SE 2
Architecture

CT SE 2
Architecture

OOO CT SE
Dependability
OOO CT SE

Dependability Safety / RAMS Engineering

RAMS Analysis & Assessment

Requirement Engineering

Model Driven Development

Code Quality Management

Software Testing & Verification

Validation & Certification

Software Architectures

Real-time Technology

Embedded Platforms

Fault-Tolerance

…

OOO CT SE
Linux

OOO CT SE
Linux

CT PP 6
Techn Risk Mngmt

CT PP 6
Techn Risk Mngmt

Page 4 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Engineering of high-quality software
Test levels – example V model

System
Requirements

Architecture,
Design

Unit
Specification

Coding

Acceptance
Testing

System
Testing

Integration
Testing

Unit
Testing

User
Requirements

based on

Page 5 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Engineering of high-quality software
Test levels, Verification & Validation – A closer View

System
Requirements

Architecture,
Design

Unit
Specification

Coding

Acceptance
Testing

System
Testing

Integration
Testing

Unit
Testing

based on

Static Analysis Area Dynamic Testing Area

Static Code Checking

Prototyping,
simulation

Analysis,
reviews,
walk through,
inspections

Legal Legal
RegulationsRegulations

Technical Technical
ConstraintsConstraints

Market/Customer Market/Customer
DemandsDemandsInterviews,

workshops

Formal
Verification

Page 6 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Formal Verification and Related Terms

•Software Verification, Software Safety Validation (IEC61508)
Verification & Validation, Static Analysis& Dynamic Testing

• See http://en.wikipedia.org/wiki/Formal_verification :
• Validation: "Are we building the right product?",

i.e., does the product do what the user/the application really requires?
• Verification: "Are we building the product right?",

i.e., does the product conform to the specifications?
• The verification process consists of static and dynamic parts.

E.g., for a software product one can inspect the source code (static) and run against
specific test cases (dynamic). Validation usually can only be done dynamically.

• Formal Method (IEC61508)
Formal Specification

• Formal Proof (IEC61508)
Formal Verification, Model Checking/Theorem Proving

• See http://en.wikipedia.org/wiki/Formal :
formal methods in computer science, including:
formal specification describes what a system should do
formal verification proves correctness of a system

Page 7 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Embedding Formal Verification into
Software Development Life-Cycle

Requirements Informal Design
/ Code

Software under Test

certif
ied

Product

ce
rti

fie
d

ce
rti

fie
d

Test Sequences

1. rcv[pv][0][0][nok]
2. resume
3. send[1][0][1][0]
4. rcv[pv][0][1][ok]
5. resume
6. send[1][0][1][1]
...

Test Sequences

1. rcv[pv][0][0][nok]
2. resume
3. send[1][0][1][0]
4. rcv[pv][0][1][ok]
5. resume
6. send[1][0][1][1]
...

Formal Model Checker

Formal Model

formalize
extract

Formal
Properties

derive

3 await slave ack

4 slave ack check

2 message prepare

5 message prepare

6 await slave ack

if
host CRC
or slave timeout
or slave CRC/cons.Nr.
or not operator ack.
then
store faults,
x=x+1, use FV

if ack. received
 with cons.Nr.=0
 and not host
timeout
then
restart host- timer

7 slave ack check

if ack. received with old cons.Nr.
 and not host timeout

if message
prepared
then send

10 slave ack check

9 await slave ack

8 message prepare

if host timeout
then
store fault,
x=x+1, use FV,
restart host- timer

if not faults and operator ack.
then
reset stored faults,
old cons.Nr. = x, x=x+1,
 if slave FV activated or ipar
 then use FV
 else use PV

if host CRC or host cons.Nr. or slave timeout or slave CRC/cons.Nr.
then store faults, x=x+1, use FV

if host timeout
then
x=x+1, use FV

if message prepared
then send

if
host CRC
or slave timeout
or slave CRC/cons.Nr.
then
store faults,
x=x+1, use FV,
restart host- timer

if host timeout
then
store fault,
x=x+1, use FV,
restart host- timer

if message prepared
then send

if not stored faults before system start
then x=0, use FV

1 system start

if ack. received not with old cons.Nr
 and not host timeout
then restart host- timer

if ack. received
 with cons.Nr.=x
 and not host timeout
then restart host- timer

if stored faults before/during system start
then x=1, use FV

if not faults
then
old cons.Nr. = x, x=x+1,
 if slave FV activated or
ipar
 then use FV
 else use PV

if not faults
then
x=x
 if slave FV activated or ipar
 then use FV
 else use PV

if wait delay time
then store fault, restart host- timer

11 wait delay time

 parametrization ok
 configuration ok
 initial values = 0
 restart host-timer

cont. refine

derive
add.
tests

Verification
Results

Beware of bugs
in the above code;

I have only proved it
correct, not tried it.

[Donald E. Knuth, 1977]

Page 8 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Model
Specification

Correctness
Requirement

Syntax
Checker

Exhaustive
Verification

Probabilistic
Verification

Output
(verification

result)

Fail trace
(if exists)

Settings

LTL, Omega-
regular

automata

Sequence of
total model state and
subsequent changes

in model

SPIN (Bell Labs, G. Holzmann):
Characteristics of method:
1) exhaustive verification
2) space compression
3) probabilistic verification (hashing)

Model in PROMELA (C-like language,
CSP-based) is automatically translated into
the extended FSMs.
These FSMs are verified to be correct
according to correctness requirements.
Correctness requirements are presented in
Linear Temporal Logic (LTL)

SPIN-based
technologies are used:
•Bell-Labs (network
switches, OS Plan 9)
•NASA (Cassini
mission at Saturn,
Deep Space 1)
•Siemens CT

Formal Model Verification – SPIN tool

SPIN website
http://spinroot.com/spin/whatispin.html
Wikipedia
http://en.wikipedia.org/wiki/SPIN_model_checker

Page 9 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Example A
System Structure

System

Peer Device
Object under

Analysis

Customized Line Discipline
Serial Line: 57600 bps
Error Protection:
•Serial Line: Parity Bit
•Protocol Level: BCC for data in messages

Page 10 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Example A
Safety Property (1)

Safety Property: Any order of STX_DATA and DLE messages will be
correctly received and Receiver achieves TFirstChar state after TDLE2
state.
Modeling Solution: Sender generates valid messages STX_DATA and
DLE in all possible sequences.

Property Parts:
#define a (ReceiveState==TDLE2)
#define b (ReceiveState==TFirstChar)

Safety Property for Model Verification
in Linear Temporal Logic:
[] (<> a -> <> b)

OK:
Property Valid

STX_DATA STX_DATA STX_DATADLE ? DLE ?

TFirstChar

TLength

TData

TLastChar

TDLE2

Page 11 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Example A
Safety Property (2)

Safety Property: Any order of STX_DATA and DLE messages will be
correctly received and Receiver achieves TFirstChar state after TDLE2
state if the noise char comes suddenly.
Modeling Solution: Sender generates valid messages STX_DATA and
DLE in all possible sequences. We allow receiving of noisy char.

Property Parts:
#define a (ReceiveState==TDLE2)
#define b (ReceiveState==TFirstChar)

Safety Property for Model Verification
in Linear Temporal Logic:
[] (<> a -> <> b)

Error:
Property Invalid

STX_DATA STX_DATA STX_DATADLE ? DLE x

TFirstChar

TLength

TData

TLastChar

TDLE2

Page 12 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Example A
Error Analysis for Property (2) : Source Code

switch (theDriverData->ReceiveState) {
case TFirstChar:

switch (theChar) {
(…)
case TDRVDLE:

theDriverData->ReceiveState = TDLE2; break;
}

(…)
case TDLE2:

if(theChar == '?' || theChar == TDRVENQ)
theEvent = TDLEReceived;

if(atomic_read(&theDriverData->WabtCounter) == 50) {
atomic_set(&theDriverData->WabtCounter, 0);
theDriverData->ReceiveState = TFirstChar;

}
break;
(…)

Error:
Property Invalid

Explanation:
SPIN shows that DRV
could be blocked if
noisy (incorrect) char
came after TDRVDLE.

NOTE: the real driver
will wait 50 timeouts
(~5-20 sec) before it
starts receiving of
next telegram
(e.g. STX_DATA)

TFirstChar

TLength

TData

TLastChar

TDLE2

Page 13 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Example A
FMV Results for the Driver

Operational threats identified by SPIN:
Long delay identified if 1 noise char comes
Data loss within telegram receiving found

Model-building review:
Performance bottleneck could create high interrupts latency
Wrong API-version calls
“Magic Constants” used in code
“Dead Code” identified

Page 14 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Summary (1)
Objects and Focus Setting

Fault Types:
Deadlock/Livelock
Endangered Safety
Integrity violation
Correctness violation
Non-expected communication

order
Race Conditions
…

Robustness Aspects:
Standard operation
Unpredictable rare impact
“Aggressive/Noisy Environment”

Objects under Analysis:
Protocols and Interfaces
(especially under construction)
Interacting components
(e.g. new architecture or critical
mechanism)
Data access and control logic in
parallel and distributed system

Additional Focus set on:
System Initialization
Restart of Components
Communication Delays
and Faults

Page 15 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Dos & Don’ts

•Improve verification capabilities in
early phases by introducing formal
techniques.
•Increase precision in specifications.
Apply formal techniques at design and
fight ambiguities.
•Promote formally motivated checks
into standard peer reviews.
•Focus formal techniques on
architectural hotspots: complex,
critical, risky, central parts
•Exploit formal results for test case
definition: use failure traces to focus
tests on design flaws.

•Don’t believe in wonders. Formal
verification is not cheap and needs
invests in early phases.
•Don’t act without concept. Tools need
evaluation, and competence needs to be
built.
•Don’t apply formal techniques as rescue
belt. It’s not to patch ambiguous results
from less mature processes.
•Don’t believe you will not need to test
your software any more. Formal
verification does not replace testing
phases.
•Don’t believe your software is
completely verified. You only proved that
a model fulfills certain properties.
That’s it – no more, no less.

Don’t split theory and practice.
Closely align work of formal teams and safety/development teams.

Page 16 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

The Formal Hype Cycle

Visibility

Maturity

Formal Verification
of HW ASICs

Autom. Verif. of
full-scale systems

Formal std. design
(SaferUML)

Seamless integration
into System Dev.

Productive use in
Avionics, Aeronautics

First experiences in
civil industrial sectors

Unified formal
design standard

Various
specialized

comm. & pd. tools

Page 17 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Challenges for Formal Model Verification

Challenges
Decrease modeling efforts
Increase usability, reduce qualification degree needed
Integration with tools for software development
Traceability from modeling phase to testing phase
Automated properties and models extraction
from heterogeneous input material
Again coverage and completeness issues
“How much will be sufficient?”
…

Model Checking gains importance:

“The behavior of even nonbuggy
distributed applications can easily
defy our human reasoning skills.”

Logic Verification of ANSI C code with SPIN
Gerard J. Holzmann

Page 18 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Summary (2)
Reasons for Formal Model Verification

Standards recommend formal methods and proofs
e.g. IEC61508 : SIL2/3/4 - for design, verification, safety validation.
Formal methods emerge at the industry sector
easier to use tooling (Open Source, Tool Vendors), best practices
(space/military, avionics, transportation/automotive, Microsoft).
Formal methods improve precision within development,
capturing and ensuring functional and non-functional properties.
Early correctness proof of design concepts prevents design faults to
propagate into development, test and operation phase.
Byzantine failures with hard to identify root-causes often are the
consequence of weakly defined or misunderstood requirements.
Environmental impact and sporadic influences which are hard to test
can be incorporated into formal models.
Stronger evidence of safety-related claims; amends test results and
improves acceptance by certification authorities.

Page 19 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Conclusions

•Increasing complexity and importance of software
More and more safety-relevant functions, which nowadays might be executed manually by
human, will be realized in software and taken over automatically by the technical system.

•Traditionally software plays a subordinate role
In systems engineering and also in relevant standards the current perspective on software
is that of an subordinate element. This is expected to change with the growing
pervasiveness of software especially in safety-relevant development.

•Formal verification in practice applied to selected software parts
In the current practice formal verification is applied to verify selected system aspects. It
already proved usefulness and applicability.

•Cost and complexity of formal techniques are further high
Up to now formal verification is not an easy-to-use technique. At this time it is not seen to
enable a complete software/system verification.

•Formal Verification does not/will never replace systematic testing
Formal verification adds precision to the traditional verification process. It extends, but
does not replace rigorous testing. Size limitations and abstractions of models through
formal verification are to be carefully verified in reality.

Copyright © Siemens AG, Corporate Technology, 2008. All rights reserved.

Corporate Technology

Thank you for your attention.

Do you have some questions ?

Copyright © Siemens AG, Corporate Technology, 2008. All rights reserved.

Corporate Technology

Backup

Page 22 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Fundamental Concepts of Dependability
(A. Avizieniz, J.-C. Laprie, B. Randell)

Concepts of Dependability developed by
A. Avizieniz, J.-C. Laprie, B. Randell

Page 23 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Definitions: Dependability Attributes

Dependability is an integrative concept that encompasses the following
system attributes:

Availability: readiness for correct service
Reliability: continuity of correct service
Safety: absence of catastrophic consequences on the user(s) and the
environment
Confidentiality: absence of unauthorized disclosure of information
Integrity: absence of improper system state alterations
Maintainability: ability to undergo repairs and modifications

Compound attributes:
Survivability: system capability to resist a hostile environment so that it can
fulfill its mission (MIL-STD-721, DOD-D-5000.3)
Security: Dependability with respect to the prevention of unauthorized access
and/or handling of information (Laprie, 1992)

* RAM / RAMS: acronyms for reliability, availability, maintainability, and safety

Page 24 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

IEC61508-3: Formal Methods

Formal methods are a specification technique.
Formal methods (see IEC61508-7, C2.4) are for example, CCS, CSP, HOL, LOTOS, OBJ,

temporal logic, VDM and Z.
Formal methods are recommended (R SIL2/3, HR SIL4) for
• 7.2/Table A.1:

Software safety requirements specification
• 7.4.3/Table A.2:

Software design and development: software architecture design
• 7.4.5/Table A.4:

Software design and development: detailed design
• 7.7/Table A.7/Table B5

Modeling in the context of software safety validation
Sometimes mixed up with semi-formal methods e.g. finite state machines (FSM)
• semi-formal methods (table B.7):

Logic/function block diagrams, sequence diagrams, data flow diagrams, finite state
machines/state transition diagrams, e.a.

Page 25 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

IEC61508-7, C2.4: Formal Methods (ii)

•Focus: Logic/HW
• HOL – Higher Order Logic for HW verification
• Temporal logic – Formal demonstration of safety and operational requirements

•Focus: Sequential processes
• OBJ – Algebraic specification of operations on abstract data types (ADT, similar to

ADA packages).
• Z – Specification language notation for sequential systems
• VDM – Vienna Development Method (VDM++ concur. extension)

•Focus: Communicating concurrent processes
• LOTOS, extends CCS – Calculus of Communicating Systems
• CSP – Communicating Sequential Processes

•Other semi-formal techniques (see B.2.3.2)
• Finite state machines/state transition diagrams for control structures
• Petri nets (graph theory) for concurrent, asynchronous control flow; extension:

time concept, data/information flow

Page 26 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

IEC61508-3: Formal Proofs

Formal proofs are recommended (R SIL2/3, HR SIL4) for
• IEC61508-3/7.9/Table A.9: Software verification

Formal proofs are a static means for software verification
NOTE 3 – In the early phases of the software safety lifecycle verification is static,

for example inspection, review, formal proof. When code is produced dynamic testing
becomes possible. It is the combination of both types of information that is required for
verification.

For example code verification of a software module by static means includes
such techniques as software inspections, walk-throughs, static analysis, formal proof. Code
verification by dynamic means includes functional testing, white-box testing, statistical
testing.

It is the combination of both types of evidence that provides assurance that each
software module satisfies its associated specification.

Sometimes mixed up with static analysis e.g. symbolic execution:

• Static analysis (table A.9, table B.8): e.g. Walk-through/design reviews, control flow /
data flow analysis, or symbolic execution, e.a.

Page 27 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Outline of Formal Model Verification

Main Steps:
Objects under Analysis
identification in software project

Correctness properties definition
for Objects under Analysis

Creation of model for
Objects in PROMELA

Model verification by SPIN and
findings analysis

Report preparation on
verification results

dx+2dy=a
7dx-8dy=b

….

Differential equations

Target Software

1. a[i]=a[k]<a[i] ...
 2. k+=idxA;
 3. merge(a,t);
 4. t[k] = ...

Sorting Algorithm

if :: atomic {
qWriteIrp?[writeReq] ->
qWriteIrp?writeReq;

 } qDevTX!true ;
qWriteIrpBack!writeOk;
 :: else -> skip; ...

Critical Algorithm – Control Logic

solved

proved

verified

Further promising actions:
• Automate procedure of model creation from C/C++ sources

Page 28 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

SPIN model checker (ii)

Wikipedia http://en.wikipedia.org/wiki/SPIN_model_checker
SPIN is a tool for software model checking. It was written by Gerard J. Holzmann and
others, and has evolved for more than 15 years. SPIN is an automata-based model
checker. Systems to be verified are described in Promela (Process Meta Language), which
supports modeling of asynchronous distributed algorithms as non-deterministic automata.
Properties to be verified are expressed as Linear Temporal Logic (LTL) formulas, which are
negated and then converted into Büchi automata as part of the model-checking algorithm.
In addition to model-checking, SPIN can also operate as a simulator, following one possible
execution path through the system and presenting the resulting execution trace to the user.
Since 1995, (approximately) annual SPIN workshops have been held for SPIN users,
researchers, and those generally interested in model checking. In 2001, the Association for
Computing Machinery awarded SPIN its System Software Award.
Holzmann, G. J., The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley, 2004. ISBN 0-321-22862-6.
SPIN website http://spinroot.com/spin/whatispin.html

Page 29 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Snapshot of SPIN Verification Screen
Snapshot of SPIN Verification Screen

Page 30 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

SPIN model checker (iii) – References

Wikipedia http://en.wikipedia.org/wiki/SPIN_model_checker
SPIN Website http://spinroot.com/spin/whatispin.html
An overview paper of Spin, with verification examples, is:

The Model Checker Spin,
IEEE Trans. on Software Engineering,
Vol. 23, No. 5, May 1997, pp. 279-295.
(PDF)

The automata-theoretic foundation for Spin:
An automata-theoretic approach to automatic program verification,
by Moshe Y. Vardi, and Pierre Wolper,
Proc. First IEEE Symp. on Logic in Computer Science,
1986, pp. 322-331.
(PDF)

Page 31 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Linear Temporal Logic : SYNTAX

LTL - Linear Temporal Logic
Best to specify safety and correctness properties
See also http://en.wikipedia.org/wiki/Linear_Temporal_Logic

SYNTAX
Grammar: ltl ::= opd | (ltl) | ltl binop ltl | unop ltl

Unary Operators (unop):
[] (the temporal operator always),
<> (the temporal operator eventually),
! (the boolean operator for negation)

Binary Operators (binop):
U (the temporal operator strong until)
V (the dual of U): (p V q) == !(!p U !q)
&& (the boolean operator for logical and)
|| (the boolean operator for logical or)
-> (the boolean operator for logical implication)
<-> (the boolean operator for logical equivalence)

Operands (opd): Predefined: true, false

Page 32 24th Jan 2008 © Siemens AG, Corporate TechnologyE. Reyzl, V. Okulevich CT SE

Linear Temporal Logic (ii)

Extension of classical logic (∧, ∨, ¬, ⇒, ∀, ∃)
works over an (infinite) sequence of states

New operators:
○ next time
○ ϕ ϕ holds at time t + 1

◊ eventually
◊ ϕ ϕ holds at some time t + n

□ always
□ ϕ ϕ holds for all future times t + n

Uuntil
ϕ U ψ ϕ holds for all future times until the time where ψ holds

∩ release
ϕ ∩ ψ either ϕ holds forever, or until ϕ and ψ holds at the same time

