
The Spark Approach

toto

High Integrity SoftwareHigh Integrity Software

Regensburg

18 June 2009

John Barnes

Regensburg 1
© John Barnes Infomatics
and Praxis Critical Systems

What is software for?

Does the software drive the hardware?Does the software drive the hardware?

Or

Does the hardware implement the software?

We confuse these at our peril.

Must separate these concerns by suitable
decomposition and well defined interfaces.

Regensburg 2
© John Barnes Infomatics
and Praxis Critical Systems

Evolution

Bob Phillips Bernard Carre

RSRE Malvern

analysis tools

Nottingham Univ.

graph theory

SPADE Southampton Univ

SPARK Program Validation Ltd

SPARK 95 Praxis Critical Systems

Regensburg 3
© John Barnes Infomatics
and Praxis Critical Systems

Spark and Ada

Ada
specialised

Remainder
of Ada

The
common

SPARK
core

SPARK
proofp

annexes core kernel annotations
p
annotations

Ada SPARK

A subset of Ada plus annotations as comments;

subset chosen to enable rigorous analysis.

Programs usually compiled by normal Ada compiler.
Can also compile to C.

But Spark is really a language in its own right.p y g g g

Programs are analysed by Spark Examiner.

Proofs (optional) done by Simplifier and Proof Checker.

Regensburg 4
© John Barnes Infomatics
and Praxis Critical Systems

Ada Example

An example of a simple stack of floating point numbers.

Implemented as an array of fixed length, say 100.

User can Push items on and Pop them offUser can Push items on and Pop them off.

Also ask how many items on the stack.

Attempt to Push when full, or Pop when empty raises an
exception.

There are three parts:p

Specification, view of the stack to the user,

Body of stack, its implementation,

User.

They can be compiled separately.

But need spec in order to compile body and user.

Body and user are independent.

Regensburg 5
© John Barnes Infomatics
and Praxis Critical Systems

Spec of Stack

package A_Stack is
Stack_Error: exception;
procedure Push(X: in Float);
procedure Pop(X: out Float);
function Number_On_Stack return Integer;

end A_Stack;

Gi h i f ti t b bl t it d iGives enough information to be able to write code using
the stack and for the compiler to compile calls of the
procedures and functions.

Says nothing about how it is implementedSays nothing about how it is implemented.

Regensburg 6
© John Barnes Infomatics
and Praxis Critical Systems

Body of Stack

package body A_Stack is
S: array(1 .. 100) of Float;
Pointer: Integer := 0;
procedure Push(X: in Float) is
begin

if Pointer = 100 then
raise Stack_Error;

end if;
Pointer := Pointer + 1;o te o te ;
S(Pointer) := X;

end Push;
procedure Pop(X: out Float) is
begin

if Pointer = 0 then
raise Stack_Error;

else
X := S(Pointer);
Pointer := Pointer - 1;;

end if;
end Pop;

function Number_On_Stack return Integer is
begin

return Pointer;
end Number_On_Stack;

end A_Stack;

Regensburg 7
© John Barnes Infomatics
and Praxis Critical Systems

The User

with A_Stack;
procedure Main is

A, B, C: Float;

begin

A := ...; B := ...; C := ...;

A_Stack.Push(A);
A S k P h(B) b i h h kA_Stack.Push(B); -- mess about with the stack

A_Stack.Pop(A);
A_Stack.Pop(B);

... -- and so on

exception
when A_Stack.Stack_Error = -- if stack goes wrong

..... -- print some message perhaps

end Main;

Regensburg 8
© John Barnes Infomatics
and Praxis Critical Systems

More Briefly

If get fed up with writing A_Stack then more briefly

with A_Stack; use A_Stack;
procedure Main is

A, B, C: Float;

begin

A := ; B := ; C := ;A := ...; B := ...; C := ...;

Push(A);
Push(B); -- mess about with the stack

Pop(A);
Pop(B);

... -- and so on

exception
when Stack Error => -- if stack goes wrongwhen Stack_Error > if stack goes wrong

..... -- print some message perhaps

end Main;

But this shorthand is not allowed in Spark because it violates
an important principle.

Regensburg 9
© John Barnes Infomatics
and Praxis Critical Systems

Some Principles

Static storage:

no dynamic bounds,

ino recursion

Unique names:

one name <-> one entityone name <-> one entity

no anonymous entities

No exceptions:p

=> no run-time errors

Regensburg 10
© John Barnes Infomatics
and Praxis Critical Systems

Software Problems

Lots of kinds of software

Pocket calculators

Office stuff: word processors, spreadsheets

if they go wrong, tough luck, swear and start again

there is no specification, they do what they do

Serious programs: safety critical and security criticalp g y y

if safety critical go wrong,
people die and/or environment is damaged

if security critical go wrong,
loss of national security, commercial
reputation, theft

Serious programs have to be correct.

And seen to be correct.

Regensburg 11
© John Barnes Infomatics
and Praxis Critical Systems

Contracts

Serious programs have a specification

=> contract between ultimate client and
software developer.p

Contracts are not new.

Early programming libraries had specs (eg Algol 60 library in
CACM).

Spec tells the user what parameters to supply, any
constraints etc.

In essence there is a contract between user and writer of
software.

The user promises to provide suitable parameters andThe user promises to provide suitable parameters and
the subroutine promises to provide the right answer.

If they both keep their promises then all is OK.

Contracts are in fashion but distinguish Static and Dynamic.

Regensburg 12
© John Barnes Infomatics
and Praxis Critical Systems

Program Decomposition

Break a program into parts, define what each part does.

This defines the interface to other parts.

We can then develop the parts independently.We can then develop the parts independently.

IF each part obeys its side of the contract implied by the
interfaceinterface

AND

IF the interfaces are defined correctly

THEN

when we put the system together, it will work perfectly!

Regensburg 13
© John Barnes Infomatics
and Praxis Critical Systems

But
But it goes wrong - why?But it goes wrong why?

Interface definitions are not usually complete:

holes in the contracts

Components are not correct or are not used correctly:

contracts are violated

Also, maybe, contracts are not for the right problem anyway!

Spark addresses these problems by providing techniques
that help to ensure:that help to ensure:

no holes in contracts
contracts are not violated.

General idea is

Correctness by Construction

That is, use techniques that prevent you from writing a wrong
program in the first place.

Regensburg 14
© John Barnes Infomatics
and Praxis Critical Systems

Interface Definition

Interface definition should:

hide all irrelevant detail

expose all relevant detail.

Interface should be complete and correct.

Distinguish the interface from the implementation.

Details of implementation should not concern
writer of interface.

As we have seen:

Package specification defines the interfacePackage specification defines the interface.

Package body provides the implementation.

But Ada interfaces do not tell us enough.But Ada interfaces do not tell us enough.

Regensburg 15
© John Barnes Infomatics
and Praxis Critical Systems

Simple Example

What does this specification tell us?

Frankly - not much!

procedure Add(X: in Integer);

y

There is a procedure Add,
it has a parameter of type Integer.

B t it thi b t h t it d t h it d itBut it says nothing about what it does or to whom it does it.

It might print the date;

It might subtract two fixed point numbers;

It might launch a missile;

It might ...

Regensburg 16
© John Barnes Infomatics
and Praxis Critical Systems

Add Minimal Spark Annotation - Visibility

procedure Add(X: in Integer);

Global annotation must mention all globals accessed by
Add

procedure Add(X: in Integer);
--# global in out Total;

Add.

Mode information stronger than Ada.

In Ada, modes give permission to access.

In Spark, modes state that values must be
used or produced.

So now we knowSo now we know

Total will get a new value, nothing else will be
changed.

Old value of Total will be usedOld value of Total will be used.

Value of parameter X will be used.

In summary:

Add computes a new value of Total using its
original value and X.

But we still are not assured that it will do addition.

Regensburg 17
© John Barnes Infomatics
and Praxis Critical Systems

Add Proof Annotation
Can add postcondition.Can add postcondition.

procedure Add(X: in Integer);
--# global in out Total;

Postcondition explicitly says that final value of Total is its initial
value added to the value of X.

g ;
--# post Total = Total~ + X;

Note the tilde only used with mode in out

Total~ means initial value
Total means final value (strictly current value)Total means final value (strictly current value)

The specification is now complete - it tells the whole truth.

But ...

Should really add a precondition, such as

--# pre X + Total <= Integer'Last;

Don't need tilde because current value (at start) is initial value.

Regensburg 18
© John Barnes Infomatics
and Praxis Critical Systems

Proof is Static

These pre- and postconditions are checked before the
program runs.

It's no good checking when the program runsIt s no good checking when the program runs.

Consider
procedure Touchdown(...);
--# pre Undercarriage Down;p g _ ;

Too late to be told as the plane lands.

Like bolting the door after the horse has bolted.

Note double use of "bolt".
Overloading is a problem in English.
Forbidden in Spark.

Eiffel has pre- and postconditions -
but only checked at execution time,
not much use.

Regensburg 19
© John Barnes Infomatics
and Praxis Critical Systems

Implementation

We have seen how to define the interface fully.

It is harder to ensure that implementation is OK. This leads
into thoughts of how to ensure it is correct. (Debugging)

Four ways of finding errors:

1 by the compiler

2 at runtime by a language check

3 by deliberate testing

4 by program crashing

It is cheaper and more reliable to find errors earlier.

Ada is quite good at finding many errors at compile time.

It has a good syntax structure - another reason why Ada was
a good base for Spark.

Regensburg 20
© John Barnes Infomatics
and Praxis Critical Systems

Consider
A piece of Ada:

type Signal is (Danger, Caution, Clear);
...
if The_Signal = Clear then

Open_Gates;
Start TrainStart_Train;

end if;

The corresponding C might be

if (the_signal == clear)
{

open_gates();
start_train();

}}

Consider typical typographical error
eg add semicolon at end of first line.

Ada program fails to compile quite safe Type 1 errorAda program fails to compile - quite safe. Type 1 error.

C program compiles OK. But then program misbehaves.

It always opens the gates and sends train on its perilous
journey.

Type 4 error (well, train crashes rather than program!)

Similarly replacing == by = also results in disaster.

Regensburg 21
© John Barnes Infomatics
and Praxis Critical Systems

Similarly replacing by also results in disaster.

Sooner the better

The sooner an error is found the better.

Cheaper to find and cheaper to put right.

Goal of Spark:

provide tools so that all errors can be found
before the program executes.

Tools allow various levels of annotation and so variousTools allow various levels of annotation and so various
levels of analysis.

Regensburg 22
© John Barnes Infomatics
and Praxis Critical Systems

Also Derives Notation

Says for each output which inputs it depends uponSays for each output which inputs it depends upon.

procedure Add(X: in Integer);
--# global in out Total;
--# derives Total from Total, X;

Adds no further information in this simple example

(because only one out parameter).

Think of globals as extra parameters where actual parameter
is always the same.

Regensburg 23
© John Barnes Infomatics
and Praxis Critical Systems

Three Levels of Annotation

Choose level according to analyses required.

• visibility annotations (mandatory)

data flow analysis direction of flow correctdata flow analysis - direction of flow correct

• derives annotations (optional)

information flow analysis - relationships correct

• proof annotations (optional)

proof of correctness - values correct

Proof and derives annotations are independent:

proof can be done without adding the derives
annotations.

Regensburg 24
© John Barnes Infomatics
and Praxis Critical Systems

Specification is the Interface
Annotations go with the specification.

Since they are part of the interface.

Not generally repeated in the body.

If no distinct spec then occur in body before "is" thusIf no distinct spec then occur in body before is thus

procedure Add(X: in Integer)
--# global in out Total;
--# derives Total from Total, X;

pre X + Total <= Integer'Last;--# pre X + Total <= Integer Last;
--# post Total = Total~ + X;
is
begin

Total := Total + X;
end Add;

Annotations separate interaction between caller and spec from
that between spec and implementation in body.

caller <=> spec <=> body

The Spark Examiner carries out two lots of checks:

Checks that all calls are consistent with specChecks that all calls are consistent with spec.
Checks that body conforms to spec.

But never needs body in order to analyse calls.

Regensburg 25
© John Barnes Infomatics
and Praxis Critical Systems

Three Tools

The ExaminerThe Examiner

checks conformance to Ada kernel

checks annotations

performs flow analysis

can generate Verification Conditions for proof

The Simplifier

simplifies verification conditions

Proof Checker

can be used to prove verification conditions

Regensburg 26
© John Barnes Infomatics
and Praxis Critical Systems

An Example

An odometer, records total distance and distance for trip

Trip distance can be reset to zero

Total distance cannot be reset.

package Odometer is
procedure Zero_Trip;
function Read_Trip return Integer;
function Read_Total return Integer;
procedure Inc;

end Odometer;

This describes the interface to a package called Odometer.
The package encapsulates various procedures and functions
(subprograms).

It just gives the interface to those subprograms but not the
details of their code.

Regensburg 27
© John Barnes Infomatics
and Praxis Critical Systems

Odometer in Spark

Add Spark annotations to specification

package Odometer
--# own Trip, Total: Integer;
isis

procedure Zero_Trip;
--# global out Trip;
--# derives Trip from ;
--# post Trip = 0;# post Trip 0;
function Read_Trip return Integer;
--# global in Trip;
function Read_Total return Integer;
--# global in Total;--# global in Total;
procedure Inc;
--# global in out Trip, Total;
--# derives Trip from Trip & Total from Total;
--# post Trip = Trip~ + 1 and Total = Total~ + 1;p p p ;

end Odometer;

The interface now describes the full details.

Spark is mostly about strengthening the definition of
interfaces.

Regensburg 28
© John Barnes Infomatics
and Praxis Critical Systems

Odometer Body

package body Odometer ispackage body Odometer is
Trip, Total: Integer;
procedure Zero_Trip is
begin

T i 0Trip := 0;
end Zero_Trip;
function Read_Trip return Integer is
begin

return Trip;return Trip;
end Read_Trip;
function Read_Total return Integer is
begin

return Total;;
end Read_Total;
procedure Inc is
begin

Trip := Trip + 1; Total := Total + 1;
end Inc;

begin
Total := 0; Trip := 0;

end Odometer;end Odometer;

No annotations in body.

The package body is quite unchanged.

Regensburg 29
© John Barnes Infomatics
and Praxis Critical Systems

Exchange

procedure Exchange(X Y: in out Float)procedure Exchange(X, Y: in out Float)
--# derives X from Y &
--# Y from X;
is

T: Float;T: Float;
begin

T := X; X := Y; Y := T;
end Exchange;

The local variable T is not mentioned in the annotations.

It is hidden irrelevant detail.

Avoid global variables whenever possible.

Regensburg 30
© John Barnes Infomatics
and Praxis Critical Systems

Bad Exchange
Using unnecessary global T is sinful

procedure Exchange(X, Y: in out Float)
--# global ... T; -- mode to be supplied by student
--# derives X from Y &
--# Y from X;# Y from X;
is
begin

T := X; X := Y; Y := T;
end Exchange;

This is illegal because T not used in derives annotation.

Have to write

--# derives X from Y &
--# Y from X &
--# T from X;

Annotations regarding T will now permeate the program.Annotations regarding T will now permeate the program.
Moreover now writing

Exchange(A, B);
Exchange(P, Q);

results in

Exchange(A, B);
^1

Regensburg 31
© John Barnes Infomatics
and Praxis Critical Systems

!!! (1) Flow Error : Assignment to T is ineffective.

Remember Interfaces

Assignment to T is ineffective - for the external view presented
by the abstraction.

Of course the assignment is effective internally but that is notOf course the assignment is effective internally but that is not
the concern of the abstraction as presented by the interface.

Remember that the interface simply says

procedure Exchange(X, Y: in out Float)
--# global ... T;
--# derives X from Y &
--# Y from X &
--# T from X;

The analysis of the calls is done using just this information and
never looks at the body.

Regensburg 32
© John Barnes Infomatics
and Praxis Critical Systems

Abstract State Machine

package The_Stack
--# own S, Pointer;
--# initializes Pointer;
is

procedure Push(X: in Integer);procedure Push(X: in Integer);
--# global in out S, Pointer;
--# derives S from S, Pointer, X &
--# Pointer from Pointer;
procedure Pop(X: out Integer);p p(g);
--# global in S; in out Pointer;
--# derives Pointer from Pointer &
--# X from S, Pointer;

end The_Stack;

Note how details of internal state are revealed.
This is bad because the detail is irrelevant.

Promises that Pointer is initialized.

Regensburg 33
© John Barnes Infomatics
and Praxis Critical Systems

Body

package body The Stack ispackage body The_Stack is
Stack_Size: constant := 100;
type Pointer_Range is range 0 .. Stack_Size;
subtype Index_Range is Pointer_Range

range 1 .. Stack_Size;
type Vector is array (Index_Range) of Integer;
S: Vector;
Pointer: Pointer_Range;
procedure Push(X: in Integer) is
beginbegin

Pointer := Pointer + 1;
S(Pointer) := X;

end Push;
procedure Pop(X: out Integer) isprocedure Pop(X: out Integer) is
begin

X := S(Pointer);
Pointer := Pointer - 1;

end Pop;
begin initializationbegin -- initialization

Pointer := 0;
end The_Stack;

State is initialized in package initialization;
- this is before main subprogram is entered.

Regensburg 34
© John Barnes Infomatics
and Praxis Critical Systems

Refinement

package The_Stack
--# own State;
--# initializes State;
is

procedure Push(X: in Integer);
--# global in out State;
--# derives State from State, X;
procedure Pop(X: out Integer);

global in out State;--# global in out State;
--# derives State, X from State;

end The_Stack;

Indicates presence of hidden state
- but does not reveal irrelevant details.

State is an abstract variable - not an Ada variable.

Regensburg 35
© John Barnes Infomatics
and Praxis Critical Systems

Refined Body
package body The_Stack
--# own State is S Pointer; -- refinement# own State is S, Pointer; refinement
is

Stack_Size: constant := 100;
type Pointer_Range is range 0 .. Stack_Size;
subtype Index_Range is Pointer_Range range 1 .. Stack_Size;
type Vector is array (Index_Range) of Integer;
S V tS: Vector;
Pointer: Pointer_Range;
procedure Push(X: in Integer)
--# global in out S, Pointer;
--# derives S from S, Pointer, X & Pointer from Pointer;
isis
begin

Pointer := Pointer + 1;
S(Pointer) := X;

end Push;
procedure Pop(X: out Integer)p p(g)
--# global in S; in out Pointer;
--# derives Pointer from Pointer & X from S, Pointer;
is
begin

X := S(Pointer);
Pointer := Pointer - 1;Pointer := Pointer - 1;

end Pop;
begin -- initialization

Pointer := 0;
S := Vector'(Index_Range => 0);

end The_Stack;

Annotations are rewritten in terms of concrete variables.

Both Pointer and S have to be initialized.

Regensburg 36
© John Barnes Infomatics
and Praxis Critical Systems

Analogy with Records

Refinement is analogous to private typesRefinement is analogous to private types.

type Position is private;

......

type Position is
record

X_Coord, Y_Coord: Float;
end record;end record;

There are two views of the type Position.

One shows the inner components.

There are two views of State.

One reveals S and Pointer.

Regensburg 37
© John Barnes Infomatics
and Praxis Critical Systems

Core Annotations

--# global permits access to global variables from
within subprograms.

--# derives defines interdependencies between mports p p
and exports of subprograms.

--# main_program indicates that a library subprogram is the
main subprogram.

--# own announces variables declared within
packages and thus having state.

--# initializes indicates that the given own variables are
i iti li d b f th i b iinitialized before the main subprogram is
entered.

--# inherit permits access to entities in other
packages.p g

--# hide identifies a section of text that is not to be
examined.

Regensburg 38
© John Barnes Infomatics
and Praxis Critical Systems

Correctness

General goal is to find bugs as early as possible.

Ada is better than C because more bugs are found at compile
time.

Spark extends the concept by finding even more bugs
statically and in some cases (using proof), finds all bugs
statically.

A Spark program should not raise exceptions.

Considered harder to show correctness of exception handling
than to show that exceptions are not raised.

Tasking_Error cannot arise in Spark

P E t i i S kProgram_Error cannot arise in Spark

Storage_Error storage requirements statically
known

Constraint_Error need to prove cannot be raised

Use Examiner with Run Time Check option to show no
Constraint Error.

Regensburg 39
© John Barnes Infomatics
and Praxis Critical Systems

_

A Bug in Exchange
Consider error in last assignmentg

procedure Exchange(X, Y: in out Float)
--# derives X from Y &
--# Y from X;
is

T: Float;
begin

T := X; X := Y; Y := X;
end Exchange;

T := X; X := Y; Y := X;; ; ;
^1

!!! (1) Flow Error : Ineffective statement.

This tells us that the assignment to T is useless - the value of T is
never used.

Other messages are

!!! (2) Flow Error : Importation of the initial!!! (2) Flow Error : Importation of the initial
value of variable X is ineffective.

!!! (3) Flow Error : The variable T is neither
referenced nor exported.

!!! (4) Flow Error : The imported value of X is
not sed in the deri ation of Ynot used in the derivation of Y.

??? (5) Warning : The imported value of Y may
be used in the derivation of Y.

Last two arise from mismatch with derives annotation. Are not

Regensburg 40
© John Barnes Infomatics
and Praxis Critical Systems

produced if only data flow analysis is requested.

Proof Annotations

--# pre defines the preconditions for a
procedure or function.

--# post defines the postcondition for a
procedure.

--# return defines (explicitly or implicitly) the
result of a function.

--# assert defines a predicate that is required to
be true at that point; it forms the sole
hypothesis for the following code.

--# check like assert but adds its conclusions to
the existing hypotheses.

f ti d l f f ti h--# function declares a proof function whose
meaning is given by distinct rules.

--# type declares a proof type to be used with
own abstract variablesown abstract variables.

Regensburg 41
© John Barnes Infomatics
and Praxis Critical Systems

Verification Conditions

The Examiner produces verification conditions. If these can
be shown to be true then the postconditions are satisfied.

procedure Exchange(X, Y: in out Float)
--# derives X from Y &# derives X from Y &
--# Y from X;
--# post X = Y~ and Y = X~ ;
is

T: Float;
beginbegin

T := X; X := Y; Y := T;
end Exchange;

VCs are

H1: true .
->

C1: y = y .
C2: x = x .

Have to show that Conclusions C1 and C2 follow from the
Hypothesis H1.

Clearly OK Simplifier reduces it toClearly OK. Simplifier reduces it to

*** true . /* all conclusions proved */

Regensburg 42
© John Barnes Infomatics
and Praxis Critical Systems

Asserts and Loops
Division by subtractionDivision by subtraction

procedure Divide(M, N: in Integer; Q, R: out Integer)
--# derives Q, R from M, N;
--# pre (M >= 0) and (N > 0);

post (M = Q * N + R) and (R < N) and (R >= 0);--# post (M = Q * N + R) and (R < N) and (R >= 0);
is
begin

Q := 0;
R := M;
loop

--# assert (M = Q * N + R) and (R >= 0);
exit when R < N;
Q := Q + 1;
R := R - N;R : R N;

end loop;
end Divide;

All loops must be broken with an assert.

Three are three paths

1 from start to assert
2 from assert around loop to assert
3 from assert to end

Each path has its own VC.

NB assert provides sole hypothesis at the cutpoint.

Regensburg 43
© John Barnes Infomatics
and Praxis Critical Systems

p yp p

Three Paths
From start to assert

H1: m >= 0 .
H2: n > 0 .

->
C1: m = 0 * n + m .C1: m 0 n m .
C2: m >= 0 .

Around the loop

H1: m = q * n + rH1: m = q n + r .
H2: r >= 0 .
H3: not (r < n) .

->
C1: m = (q + 1) * n + (r - n) .
C2: r - n >= 0 .

From assert to end

H1: m = q * n + r .q
H2: r >= 0 .
H3: r < n .

->
C1: m = q * n + r .
C2: r < nC2: r < n .
C3: r >= 0 .

All easily reduced to true.

S d i t id d it t i t

Regensburg 44
© John Barnes Infomatics
and Praxis Critical Systems

So procedure is correct - provided it terminates.

Proof Tools
Input annotated Spark program

outputs

messages

outputs
The Examiner

messages
regarding flow
analysis

outputs verification
conditions

declarations
and rules

outputs

messages

conditions

The Simplifier
messages
concerning
success

outputs simplified
verification conditions

interactions

with human

verification conditions

The
Proof

Checkerinputs with human
user

outputs the proofs

additional
rules

Regensburg 45
© John Barnes Infomatics
and Praxis Critical Systems

Rules
Proof tools use built-in rules such as

arith(3): X + 0 may_be_replaced_by X .

assoc(4): A * (B * C) may_be_replaced_by (A * B) * C .

distrib(1): A*(B+C) & A*B + A*C are_interchangeable .

transitivity(1): I <= K may_be_deduced_fromy() y_ _ _
[I <= J, J <= K] .

inference(2): X may_be_deduced_from [Y -> X, Y] .

We can add our own rules if we introduce our own proof
functions.

Regensburg 46
© John Barnes Infomatics
and Praxis Critical Systems

Exercise

Consider

function Factorial(N: Natural) return Natural;
--# pre N >= 0;
--# return Fact(N);--# return Fact(N);

Write a suitable body.

Write some appropriate rules for the proof function.

Note: although recursion not permitted in Spark code,
recursion is permitted in rules.

Regensburg 47
© John Barnes Infomatics
and Praxis Critical Systems

Answer
package body P isp g y

--# function Fact(N: Natural) retun Natural;

function Factorial(N: Natural) return Natural
--# pre N >= 0;
--# return Fact(N);--# return Fact(N);
is

Result: Natural := 1;
begin

for Term in Integer range 1 .. N loop
R lt R lt * TResult := Result * Term;
--# assert Term > 0 and Result = Fact(Term);

end loop;
return Result;

end Factorial;

end P;

rules are

fact(N) may_be_replaced_by N*fact(N-1) if [n > 0].
fact(0) may_be_replaced_by 1.

CareCare

Test in loop must be precise
while Term < N loop is unfruitful

Regensburg 48
© John Barnes Infomatics
and Praxis Critical Systems

Verification conditions

There are four paths
For path(s) from start to assertion:
H1: n >= 0 .
H2: 1 <= n .

->
C1: 1 > 0 .
C2: 1 * 1 = fact(1) .
For path(s) from assertion to assertion:
H1 t 0H1: term > 0 .
H2: result = fact(term) .
H3: not (term = n) .

->
C1: term + 1 > 0 .
C2 lt * (t 1) f t(t 1)C2: result * (term + 1) = fact(term + 1) .
For path(s) from start to finish:
H1: n >= 0 .
H2: not (1 <= n) .

->->
C1: 1 = fact(n) .
For path(s) from assertion to finish:

H1: term > 0 .
H2: result = fact(term) .esu t act(te)
H3: term = n .

->
C1: result = fact(n) .

All easy to prove given
fact(n) n*fact(n 1) n>0

Regensburg 49
© John Barnes Infomatics
and Praxis Critical Systems

fact(n) = n*fact(n-1) n>0
fact(0) = 1

What is wrong with

function Factorial(N: Natural) return Natural
--# pre N >= 0
--# return Fact(N);
is

Result: Natuiral := 1;
Term: Natural := 1;

b ibegin
loop

Result := Result * Term;
--# assert Term > 0 and Result = Fact(Term);
exit when Term = N;exit when Term N;
Term := Term + 1;

end loop;
return Result;

end Factorial;

Verification conditions are all true.

Regensburg 50
© John Barnes Infomatics
and Praxis Critical Systems

Answer

Does not terminate when the parameter N is zero.

So only partially correct.

Must prove termination.p

For loops always terminate.

Regensburg 51
© John Barnes Infomatics
and Praxis Critical Systems

Quantification
There are other forms allowed in conditions, for exampleThere are other forms allowed in conditions, for example

subtype Index is Integer range 1 .. 10;
type Atype is array (Index) of Integer;

procedure Zero(A: out Atype);
--# post for all M in Index => (A(M) = 0);

Sets every element of the array A to zero.

function Value_Present(A: Atype; X: Integer) return
Boolean;

--# return for some M in index => (A(M) = X);

Returns true if at least one component of A has value X.

function Find(A: Atype; X: Integer) return Index;
--# pre Value Present(A, X);p _ (,);
--# return Z => (A(Z) = X) and
--# (for all M in Index range Index'First..Z-1 =>
--# (A(M) /= X));

Returns the index of first component of array with value X.
Uses Value_Present in precondition.

Regensburg 52
© John Barnes Infomatics
and Praxis Critical Systems

Ravenspark

Ravenscar - predicatable tasking subset

RavensparkRavenspark

allows multiple tasks at top level

interaction via protected objects

interrupt handlinginterrupt handling

Enables programs to be written all in Spark without a
cyclic executive.

Regensburg 53
© John Barnes Infomatics
and Praxis Critical Systems

Conclusions

Nearly done. And to finish.y

Summary of the key issue.

Advert for my book.

S li tiSome applications.

Regensburg 54
© John Barnes Infomatics
and Praxis Critical Systems

Key Issue
Abstraction through well defined interfaces is the key.Abstraction through well defined interfaces is the key.

Ada is perhaps unique in its separation of spec and body.

It distinguishes specification from implementation.

No other language seems to do that so well.

Specifications define interfaces.

Interfaces = Contracts

Proof is Static

Spark annotations (except some for proof) go on the specs and
increase their detail.

Regensburg 55
© John Barnes Infomatics
and Praxis Critical Systems

Ada Hides Relevant Detail

Reconsider a package Stuff that contains a procedure Do ItReconsider a package Stuff that contains a procedure Do_It.
Suppose Do_It calls Push and Pop and so manipulates The_Stack.
Ada structure might be

package Stuff is
procedure Do_It;

end Stuff;end Stuff;
with The_Stack;
package body Stuff is

procedure Do_It is
begin

...
The_Stack.Push(...);
...
The_Stack.Pop(...);
...

end Do It;end Do_It;
end Stuff;
with Stuff;
procedure Main is
begin

Stuff Do It;Stuff.Do_It;
end Main;

Look at Main. What does it do? No idea at all!

Look at spec of Stuff. None the wiser.p

Have to look at body of Stuff to discover that it messes about with
The_Stack.

That is not good.

Spec should say what it does.

Regensburg 56
© John Barnes Infomatics
and Praxis Critical Systems

Spec should say what it does.
Body should say how it does it.

Spark Version Reveals All
Add minimal annotations.

--# inherit The_Stack;
package Stuff is

procedure Do_It;
--# global in out The_Stack.State;

end Stuff;

with The_Stack;
package body Stuff is

procedure Do_It is
begin

...
The_Stack.Push(...);
...
The_Stack.Pop(...);
...

end Do_It;
d St ffend Stuff;

with Stuff;
--# inherit The_Stack, Stuff;
--# main_program;
procedure Main

S S--# global in out The_Stack.State;
is
begin

Stuff.Do_It;
end Main;

Global annotations reveal that the The_Stack is being manipulated by
Do_It and (transitively) by the main subprogram.

Fine details of what is being done to the The_Stack are not revealed.

Side effect of manipulating state of the stack is revealed.

Regensburg 57
© John Barnes Infomatics
and Praxis Critical Systems

Summary
SPARK has several levels of operation:

Si l i d fl i h l ffSimple annotations detect flow errors with low effort

Derives annotations detect unexpected cross coupling

Proof annotations enable proof of key algorithms

Note: can prove absence of runtime errors withoutNote: can prove absence of runtime errors without
proof annotations

The various levels can be mixed in one program.

Overall goal is cost-effective reduction of risk.

Use SPARK as early as possible. It weeds out poor
design. And then finds many implementation errors
without proof.

It statically detects errors that a compiler cannot
detect.

Spark reaches parts of the programming process that other
tools do not reachtools do not reach.

For further details of Spark see
High Integrity Software: The SPARK

Approach to Safety and Security.
J h B dJohn Barnes and
Praxis Critical Systems Limited
Addison Wesley

ISBN 0-321-13616-0. (Better still, buy one!)

Regensburg 58
© John Barnes Infomatics
and Praxis Critical Systems

Applications – 1

In book

Lockheed Martin C130J

avionics control system (P)

Multos CA

secure system for credit cards (no P) (J)

Sholis

Ship/Helicopter Operational Limits
Instrumentation System

SIL 4 (P), SIL 2 (no P) (J TA part)

Regensburg 59
© John Barnes Infomatics
and Praxis Critical Systems

Applications – 2

More recently and/or ongoing

BAE Australia & MBDA (Filton) - Australian ASRAAM Missile
(fight control auto pilot etc)(fight control, auto-pilot etc)

SAAB Bofors & MBDA – Meteor Missile

Aermacchi – M346 Jet Trainer (primary flight control) Italian

BAE S t UKBAE Systems UK

Hawk – new mission computers

Harrier – mission computers and stores management
0055 SIL 4 (P) (J)0055 SIL 4 (P) (J)

Tornado – stores management (RTE P)

Eurofighter – all critical systems including primary flightEurofighter – all critical systems, including primary flight
control (Spark 83 P?)

Tokaneer – security demonstrator (RTE & critical P) (J)

Regensburg 60
© John Barnes Infomatics
and Praxis Critical Systems

Applications – 3

New ones

QinetiQ Aberporth – range radar tracking and
d t f isensor data fusion

Rolls-Royce (all RTE P)

T 1000 FADECTrent 1000 FADEC

Trent 900 EMU (by Praxis)

Trent 1000 EMU (by Praxis)

Thales Wells – Watchkeeper mission planning and
flight plan verification

Ansaldo Signal Australia – SIL4 railway interlocking

iFACTS interim Future Area Control Tool SystemiFACTS – interim Future Area Control Tool System
(by Praxis) (RTE+ P) (J)

Regensburg 61
© John Barnes Infomatics
and Praxis Critical Systems

Check it out

Check out

www.adacore.com

www.sparkada.com

Use and enjoy!

Regensburg 62
© John Barnes Infomatics
and Praxis Critical Systems

