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Overview

• Motivation
• State-of-the-art of testing dependable g

systems
• Case study: Electronic interlocking system 

for railways
• Project SoftNet Austria
• Research questions and answers
• Conclusion and outlook• Conclusion and outlook
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A typical dependable event-based 
systemsystem

ICE accident in Thun / Switzerland 
April 28, 2006
“Guardian angel on board” 

“Collision of ICE train with 2 shunting 
locomotives”oco ot es

Major damage to property, 8 people 
slightly injuredslightly injured

“Testing can only prove the presence of bugs, not their absence” 
Edsger Dijkstra
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Definition of model-based testing (MBT)Definition of model based testing (MBT)  

Wikipedia (retrieved Nov. 21,2008)Wikipedia (retrieved Nov. 21,2008)
• Model-based testing is software testing in which test cases are 

derived in whole or in part from a model that describes some (usually 
f ti l) t f th t d t t (SUT)functional) aspects of the system under test (SUT)

MBT

Automation

Test process
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Standards relevant for safety-critical 
systemssystems

Sources / standards involvedSources / standards involved …
• IEC 61508: Functional safety 

of electronic safety-related

Examples from various projects:

of electronic safety related 
systems  

• EN 50128: Software for 

• Interlocking systems of 
transportation systems - case 
study

railway control and protection 
systems

DO 178B S f

y
• „GSM on board“ for Airbus
• Certification of modeling tool 

• DO 178B: Software 
considerations in airborne 
systems and equipment 

ASCET

y q p
certification

• Traceability matrix regarding
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Traceability matrix according to 
IEC61508 & DO 178BIEC61508 & DO-178B

Verification group Technique IEC61508/ DO-178BVerification group Technique IEC61508/
SIL4

DO-178B

Module test and Dynamic analysis and test HR XModule test and 
integration

Dynamic analysis and test 
Functional and black-box test

HR
HR

X
X 

Software safety Functional and black-box test HR X
validation Performance tests

Probabilistic tests ...
M
M

Dynamic analysis Error seeding RDynamic analysis 
and test

Error seeding
Structural tests ...

R
HR X

Functional and Boundary value analysis HR XFunctional and 
black-box test

Boundary value analysis
Equivalence class test ...

HR
HR

X
X

Modeling Data flow diagrams HR X
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State-of-the-art of testing dependable 
systemssystems

• Standards do not describe how the recommended test 
techniques could be applied

• The testing standards established by the ISTQB 
(International Software Testing Qualification Board) ( g )
are a basis for their application in projects

• A mature organization with processes at CMMI level 3 or• A mature organization with processes at CMMI level 3 or 
4 can develop systems of high quality
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Case study: Electronic interlocking 
system (EIS)system (EIS)

• The project

• The testing approach• The testing approach

• Results and lessons learned
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The project: Electronic interlocking system 
f ilfor railways

Rail feed AreaLine-clearLine-clear

Track relay EIS

Rail feed 
power supply

Power supplyAxlecounter

components
Line-clear

element

Control

Line-clear
element

y
I/O element

EISpp y
I/O elementI/O element

components

INOM INOMINOM Input/output module

Axle 
counter

Track 
relay

Main signal

ZPZP
Counting point
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The project: Test of railway 
interlocking systeminterlocking system

A railway interlocking system controls and monitors

• All the signals, track switches (forks), 
• Track vacancy sensors and 
• Other hardware devices in a given area (in most cases a major 

station and its surroundings) stat o a d ts su ou d gs)

• The operation of a railway system obeys very strict rules in order to 
prevent accidentsprevent accidents 

• The software in the railway interlocking system implements these 
operational rulesoperational rules
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The project: Railway control system 
key propertieskey properties 
Hardware

D di d h d (Si SMC86/ECC) i h i l d d• Dedicated hardware (Siemens SMC86/ECC) with triple redundancy
(2-out-of-3) for automatic hardware fault detection 

• All I/O interfaces are redundant with antivalent electric signals
• There is no mass storage 

Software
• The software is entirely developed using compilers that are certified 

for life-critical systems (Pascal and C++)
• Programming conventions restrict the usage of dynamic memoryProgramming conventions restrict the usage of dynamic memory 

allocation, pointers, and floating point computations in a very strict 
way

• The tailoring for a concrete deployment (this could be e g Innsbruck• The tailoring for a concrete deployment (this could be e.g. Innsbruck 
central station) is entirely performed by configuration 
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The testing approach: Testing 
requirementsrequirements

• Testing is performed according to the CENELEC standards g p g
EN 50126, EN 50128, and EN 50129

• Unit tests are performed with 95% (!) C2 (all paths!) coverage on p ( ) ( p ) g
the source-code level

• For each of the remaining 5% of execution paths, a duly justification 
for non-coverage must be written (e.g. demonstrating the impossibility 
of a scenario).

P li i i t ti t t th ll d GESIM• Preliminary integration tests are run on the so-called GESIM 
(simulation emulates the target operating system, I/O devices, etc.)

Final tests are run on the actual target hardware in the laboratory• Final tests are run on the actual target hardware in the laboratory
(for each type of I/O port, at least one real world device (e.g. track 
switch engine, signal) must be used to validate the correctness of the 
drivers; the remaining ones may be emulated)
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Case study: Test preparation and 
executionexecution

• The requirements specifications in human language, such that q p g g
automated inference of test cases is not straight-forward 

• Even for a life-critical system, exhaustive testing is not feasible due to 
combinatory explosion of test casescombinatory explosion of test cases

• Test engineers develope test cases based on equivalence classes, 
boundary sets, and years of domain experience y y

• Automated test case generation is performed on the deployment-
specific level using a tool

• The actual test runs fully automated (controlled by scripts e.g. 
simulating a moving train, or faults in the outdoor hardware)

O• On the system level, there are roughly 3500 test cases

• A complete, fully automated run of the acceptance test catalogue 
takes about 10 days
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Research in FFG - Project 
S ftN t A t iSoftNet Austria  

• Cooperation between partners from industry and research 
institutions (Technical University Graz, SCC Hagenberg, Siemens, 
Cirquent, Cicero etc.): http://www.soft-net.at

• Topics:• Topics:
Complexity in software engineering
Test managementTest management 
Model-based testing and test-case generation
Mutation analysisy
...

• Typical areas of application:
Safety-critical software e.g. embedded systems
Systems of high availability e.g. VoIP
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Research questionsq

• RQ1: Which techniques for modeling are applicable in complex 
systems?

• RQ2: Which probabilistic randomized testing technique for 
software safety validation is applicable?

• RQ3: How could error seeding and mutation analysis be used to 
check the effectiveness of a module test suite?

• RQ4 Wh t t f d t i d d t t• RQ4: What type of recommender system is needed to support 
the selection of the appropriate testing technique?
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Answers: RQ1Q

RQ1: Which techniques for modeling are applicable in complex 
?

Issues to be solved …
Methods and Tools

systems?

Issues to be solved …
• Usability of modeling techniques  

• Different levels of abstraction in

• Model-based testing process

• CECIL (Cause-Effect Coverage 
Incorporating LinearDifferent levels of abstraction in 

behavioral specifications 

• Application of n-dimensional 

Incorporating Linear 
boundaries) - Test Methodology

• IDATG (Integrating Design and
equivalence classes 

• Test-case generation for 
diff t t t

IDATG (Integrating Design and 
Automatic Test-case 
Generation)

different targets • Model transformation from 
UML2 to Input/Output Symbolic 
Transition Systems
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Test-case generation methodsg

Graph-oriented methods
• Directed graph with cycles

a set of edges which connect two nodes in a defined order from– a set of edges, which connect two nodes in a defined order, from  
a start node to a goal-node

– A finite order of nodes and edges is called a graph

• The coverage of all states and events by test cases is a search in a 
graph for paths, from a start node to a goal nodeg p p , g

Data-oriented methods
• Generation of test data applying the methods of equivalence classes 

/ boundary values, semantic conditions etc.

17 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009



Model-based testing with IDATG (Integrating 
Design and Automatic Test-case Generation)Design and Automatic Test-case Generation)

IDATG
Test Data 

Generation

Test Case 
Generation

Requirement 
Specification

Low-Level
Specification

Task Flow
Modeling

Test 
ExecutionGUI information Execution

Test Execution Tool 
( T tP t ®)

recorded with
GUI SpyIDATG is used by
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(e.g. TestPartner®)
http://idatg.siemens.at



IDATG task flow modelingg

• The sequence of test steps for each task can be defined with theq p
Task Flow Editor

• Building Block Concept: Each step may either represent an 
atomic step (blue) or an entire sub task flow (yellow)atomic step (blue) or an entire sub task flow (yellow)

• Re-use of building blocks minimizes effort for test maintenance
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Test data generation: the CECIL 
methodmethod

CECIL = Cause-Effect Coverage IncorporatingCECIL  Cause Effect Coverage Incorporating
Linear boundaries

Test data design method combining the benefits of:Test data design method combining the benefits of:
• Equivalence partitioning
• Boundary value analysisBoundary value analysis
• Cause/effect analysis

Properties:
• Well suited for complex semantic dependencies
• High error-detection potential
• Difficult to apply manually, but can be mostly automated
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Example "Vehicle insurance"p

We want to test an application that calculates the annual insurance 
premium for a vehicle (Motorcycle, Car, or Van).

The basic premium depends on the engine power (in HP) and theThe basic premium depends on the engine power (in HP) and the 
vehicle type:

Motorcycle
< 25 HP 50 €

Car Van
< 60 HP 100 € 200 €< 25 HP 50 €

25 - 49 
HP

75 €

>= 50 HP 100 €

< 60 HP 100 € 200 €
60 - 99 HP 200 € 400 €
>= 100 HP 300 € 600 €

For person groups with a higher accident risk, the premium is 20% 
higher. These groups are: all persons older than 65 years, men younger 
than 25, and women younger than 21.y g

Only persons aged between 21 and 65 are allowed to drive a van. To 
drive a car or motorcycle, a person must be at least 18.
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CECIL Task 1: Problem analysisy

• Identify input variables, their types and definition ranges. y p , yp g
Represent enumeration types as numbers:
- Vehicle Type [0=Motorcycle, 1=Car, 2=Van]yp [ y , , ]
- HP [0..9999]
- Age [0 999]Age [0..999]
- Gender [0=Male, 1=Female]

• I t d ff t i bl t i t i lt• Introduce effect variables to express interim results:
- Baseprice (depends on Type and HP)
- Extracharge (depends on Age and Gender)
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CECIL Task 2:
Define causes and effectsDefine causes and effects
• Express dependencies as cause/effect pairs:
ID Cause Effect
SMALL_BIKE Type = 0 ∧ HP < 25 Baseprice = 50 €
MEDIUM_BIKE Type = 0 ∧ HP >= 25 ∧ HP < 50 Baseprice = 75 €y
BIG_BIKE Type = 0 ∧ HP >= 50 Baseprice = 100 €
SMALL_CAR Type = 1 ∧ HP < 60 Baseprice = 100 €
MEDIUM_CAR Type = 1 ∧ HP >= 60 ∧ HP < 100 Baseprice = 200 €
BIG CAR Type = 1 ∧ HP >= 100 Baseprice = 300 €BIG_CAR Type = 1 ∧ HP >= 100 Baseprice = 300 €
SMALL_VAN Type = 2 ∧ HP < 60 Baseprice = 200 €
MEDIUM_VAN Type = 2 ∧ HP >= 60 ∧ HP < 100 Baseprice = 400 €
BIG_VAN Type = 2 ∧ HP >= 100 Baseprice = 600 €
OLD_PERSON Age > 65 Extracharge = 20%
YOUNG_MALE Gender = 0 ∧ Age < 25 Extracharge = 20%
YOUNG_FEMALE Gender = 1 ∧ Age < 21 Extracharge = 20%
NORMAL MALE Gender = 0 ∧ Age >= 25 ∧ Age <= 65 Extracharge = 0%NORMAL_MALE Gender = 0 ∧ Age >= 25 ∧ Age <= 65 Extracharge = 0%
NORMAL_FEMALE Gender = 1 ∧ Age >= 21 ∧ Age <= 65 Extracharge = 0%
I_TOO_YOUNG Age < 18 Invalid
I_VAN_TOO_YOUNG Type = 2 ∧ Age < 21 Invalid
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I_VAN_TOO_OLD Type = 2 ∧ Age > 65 Invalid



Rules for causes and effects

C / ff t i ith i d t ff t• Cause/effect pairs are either assigned to an effect 
variable or to the invariant Invalid
All ff ti th ff t i bl t b• All causes affecting the same effect variable must be 
mutually exclusive

• E h ibl i t bi ti t ti f tl• Each possible input combination must satisfy exactly 
one cause for each effect variable or be Invalid.

• All t b li i t• All causes must be linear in nature
• It is not necessary to repeat the definition ranges

(e g Age > 65 automatically assumes Age ≤ 999)(e.g., Age > 65 automatically assumes Age ≤ 999)
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Generation of  test data

• Use a linear programming algorithm to find boundary p g g g y
points of the intersection space

e.g., (HP, Type, Age, Gender):
{(0, 0, 66, 0), (24, 0, 66, 0), (24, 0, 999, 0), (24, 0, 999, 1)}

• Calculate the expected results using the values of the 
effect variableseffect variables

e.g., Baseprice = 50€, Extracharge = 20% => Premium = 60€

• Repeat with other cause combinations until all causes are• Repeat with other cause combinations until all causes are 
covered at least once or no more combinations are 
possiblepossible
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User interface of IDATG tool
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Answers: RQ2Q

RQ2: Which probabilistic randomized testing technique for software 

Issues to be solved … Methods and Tools

safety validation is applicable? 

• Classical testing may be 
insufficient because of 
• too few test cases

• Statistical Testing is an 
expansion of Model-Based 
Testing that deals with state• too few test cases

• too short test time
Testing that deals with state-
transition diagrams

• Statistical analysis tools provide 
• Test case explosion

y p
the ability to derive indicators on 
SW quality properties
e g fault residual availabilitye.g. fault residual, availability, 
performance
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Randomized task flows

U til t k fl l d t t i l• Until now, task flows were only used to express typical 
user scenarios

N id• New idea:
−Generate long random sequences of building 

blocksblocks
−Consider semantic conditions in order to avoid 

invalid test cases

• Mapping of task flows to a conventional formal model 
(EFSM) is necessary( ) y

• EFSM = Extended Finite State Machine
= FSM + variables, conditions, updates
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Conversion of task flows into EFSM

M i f t /bl k t t t /t iti• Mapping of steps/blocks to states/transitions

• Task flows presuppose a lot of implicit information
i th b h i f GUI bj tconcerning the behaviour of GUI objects

• This implicit information must be made explicit in the 
form of conditions and updates

• Task flows are not a complete behavioural model => 
some details have to be supplied
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Generation strategiesg

Random WalkRandom Walk
• Simplest and cheapest method

C t b f• Coverage cannot be foreseen

• Search often runs into dead ends

Explicit Search / Model Checking
• Expensive (state space explosion)

• A certain coverage level can be guaranteedA certain coverage level can be guaranteed

• Intelligent search algorithm finds feasible paths out of 
dead ends
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Combination of strategiesg

Hybrid Approach
(developed by Dr. Gordon Fraser, TU Graz)

U R d W lk til hi l l• Use Random Walk until reaching a local 
minimum („dead end“)

U E li it S h f fi di th t• Use Explicit Search for finding a path out 
of the minimum

• Repeat until the desired length or 
coverage criterium has been reached
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Example: ATMp
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Answers: RQ3Q

RQ3: How could error seeding and mutation analysis be used to 
h k h ff i f d l i ?

Issues … Methods and tools

check the effectiveness of a module test suite?

• A program is well tested if all 
relevant faults are detected and 
removed

• Objective: How well does a test-
suite perform at detecting faults?

• Given:JUnit test suite and programremoved
• Coupling Effect (DeMillo et al., 

1978): test cases that detect 
i l f lt l d t t

• Given:JUnit-test suite and program 
that passes the test-suite

• Create mutant programs
simple faults can also detect 
more complex faults

• Competent Programmer

• Run test-suite against each mutant

• Mutation Score: Ratio                     
killed mutants / total mutantsCompetent Programmer 

Hypothesis (Acree et al., 1979): 
Programs are close to being 
correct

killed mutants / total mutants

http://www.ise.gmu.edu/~ofut/mujava/
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Answers: RQ4Q

RQ4: What type of recommender system is needed to support the 
l i f h i i h i ?

Issues … Methods and tools

selection of the appropriate testing technique?

• Interpretation of textual 
specification and creation of a 
formal model

• Charactarisation schema for 
testing techniques of Vegas (S. 
Vegas: Identifying the Relevant formal model

• Context-dependent selection of 
the appropiate test-case design 

th d

g y g
Information for Software Testing 
Technique Selection; Proceedings of 
the 2004 International Symposium 

method
• Usabilty aspects in respect to 

domain experts

on Empirical Software Engineering)

• Development of prototype of 
recommending system indomain experts recommending system in 
SoftNet
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Conclusion and outlookConclusion and outlook

• Verification and validation of safety-critical systems is the main 
h t i i S ftN tresearch topic in SoftNet

• Model-based testing and automatic test case generation 
techniques have to support different levels of abstraction q pp

• Statistical or randomized testing is currently implemented in the 
tool IDATG

• Mutation analysis was successfully used in determining the 
error-detection capability of different test suites

Next steps: 
• Development of a recommender system for the selection of test-

case design techniques
• Case studies and evaluation of methods / tools at Siemens
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