
Model-based testing and verification of
dependable systems

1 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

Armin Beer

Overview

• Motivation
• State-of-the-art of testing dependable g

systems
• Case study: Electronic interlocking system

for railways
• Project SoftNet Austria
• Research questions and answers
• Conclusion and outlook• Conclusion and outlook

2 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

A typical dependable event-based
systemsystem

ICE accident in Thun / Switzerland
April 28, 2006
“Guardian angel on board”

“Collision of ICE train with 2 shunting
locomotives”oco ot es

Major damage to property, 8 people
slightly injuredslightly injured

“Testing can only prove the presence of bugs, not their absence”
Edsger Dijkstra

3 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

g j

Definition of model-based testing (MBT)Definition of model based testing (MBT)

Wikipedia (retrieved Nov. 21,2008)Wikipedia (retrieved Nov. 21,2008)
• Model-based testing is software testing in which test cases are

derived in whole or in part from a model that describes some (usually
f ti l) t f th t d t t (SUT)functional) aspects of the system under test (SUT)

MBT

Automation

Test process

4 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

Standards relevant for safety-critical
systemssystems

Sources / standards involvedSources / standards involved …
• IEC 61508: Functional safety

of electronic safety-related

Examples from various projects:

of electronic safety related
systems

• EN 50128: Software for

• Interlocking systems of
transportation systems - case
study

railway control and protection
systems

DO 178B S f

y
• „GSM on board“ for Airbus
• Certification of modeling tool

• DO 178B: Software
considerations in airborne
systems and equipment

ASCET

y q p
certification

• Traceability matrix regarding

5 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

testing activities

Traceability matrix according to
IEC61508 & DO 178BIEC61508 & DO-178B

Verification group Technique IEC61508/ DO-178BVerification group Technique IEC61508/
SIL4

DO-178B

Module test and Dynamic analysis and test HR XModule test and
integration

Dynamic analysis and test
Functional and black-box test

HR
HR

X
X

Software safety Functional and black-box test HR X
validation Performance tests

Probabilistic tests ...
M
M

Dynamic analysis Error seeding RDynamic analysis
and test

Error seeding
Structural tests ...

R
HR X

Functional and Boundary value analysis HR XFunctional and
black-box test

Boundary value analysis
Equivalence class test ...

HR
HR

X
X

Modeling Data flow diagrams HR X

6 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

g g
State transition diagrams ... HR

State-of-the-art of testing dependable
systemssystems

• Standards do not describe how the recommended test
techniques could be applied

• The testing standards established by the ISTQB
(International Software Testing Qualification Board) (g)
are a basis for their application in projects

• A mature organization with processes at CMMI level 3 or• A mature organization with processes at CMMI level 3 or
4 can develop systems of high quality

7 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

Case study: Electronic interlocking
system (EIS)system (EIS)

• The project

• The testing approach• The testing approach

• Results and lessons learned

8 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

The project: Electronic interlocking system
f ilfor railways

Rail feed AreaLine-clearLine-clear

Track relay EIS

Rail feed
power supply

Power supplyAxlecounter

components
Line-clear

element

Control

Line-clear
element

y
I/O element

EISpp y
I/O elementI/O element

components

INOM INOMINOM Input/output module

Axle
counter

Track
relay

Main signal

ZPZP
Counting point

9 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

Flank protection area

Counting point

The project: Test of railway
interlocking systeminterlocking system

A railway interlocking system controls and monitors

• All the signals, track switches (forks),
• Track vacancy sensors and
• Other hardware devices in a given area (in most cases a major

station and its surroundings) stat o a d ts su ou d gs)

• The operation of a railway system obeys very strict rules in order to
prevent accidentsprevent accidents

• The software in the railway interlocking system implements these
operational rulesoperational rules

10 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

The project: Railway control system
key propertieskey properties
Hardware

D di d h d (Si SMC86/ECC) i h i l d d• Dedicated hardware (Siemens SMC86/ECC) with triple redundancy
(2-out-of-3) for automatic hardware fault detection

• All I/O interfaces are redundant with antivalent electric signals
• There is no mass storage

Software
• The software is entirely developed using compilers that are certified

for life-critical systems (Pascal and C++)
• Programming conventions restrict the usage of dynamic memoryProgramming conventions restrict the usage of dynamic memory

allocation, pointers, and floating point computations in a very strict
way

• The tailoring for a concrete deployment (this could be e g Innsbruck• The tailoring for a concrete deployment (this could be e.g. Innsbruck
central station) is entirely performed by configuration

11 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

The testing approach: Testing
requirementsrequirements

• Testing is performed according to the CENELEC standards g p g
EN 50126, EN 50128, and EN 50129

• Unit tests are performed with 95% (!) C2 (all paths!) coverage on p () (p) g
the source-code level

• For each of the remaining 5% of execution paths, a duly justification
for non-coverage must be written (e.g. demonstrating the impossibility
of a scenario).

P li i i t ti t t th ll d GESIM• Preliminary integration tests are run on the so-called GESIM
(simulation emulates the target operating system, I/O devices, etc.)

Final tests are run on the actual target hardware in the laboratory• Final tests are run on the actual target hardware in the laboratory
(for each type of I/O port, at least one real world device (e.g. track
switch engine, signal) must be used to validate the correctness of the
drivers; the remaining ones may be emulated)

12 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

drivers; the remaining ones may be emulated)

Case study: Test preparation and
executionexecution

• The requirements specifications in human language, such that q p g g
automated inference of test cases is not straight-forward

• Even for a life-critical system, exhaustive testing is not feasible due to
combinatory explosion of test casescombinatory explosion of test cases

• Test engineers develope test cases based on equivalence classes,
boundary sets, and years of domain experience y y

• Automated test case generation is performed on the deployment-
specific level using a tool

• The actual test runs fully automated (controlled by scripts e.g.
simulating a moving train, or faults in the outdoor hardware)

O• On the system level, there are roughly 3500 test cases

• A complete, fully automated run of the acceptance test catalogue
takes about 10 days

13 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

takes about 10 days

Research in FFG - Project
S ftN t A t iSoftNet Austria

• Cooperation between partners from industry and research
institutions (Technical University Graz, SCC Hagenberg, Siemens,
Cirquent, Cicero etc.): http://www.soft-net.at

• Topics:• Topics:
Complexity in software engineering
Test managementTest management
Model-based testing and test-case generation
Mutation analysisy
...

• Typical areas of application:
Safety-critical software e.g. embedded systems
Systems of high availability e.g. VoIP

14 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

Critical banking and insurance applications

Research questionsq

• RQ1: Which techniques for modeling are applicable in complex
systems?

• RQ2: Which probabilistic randomized testing technique for
software safety validation is applicable?

• RQ3: How could error seeding and mutation analysis be used to
check the effectiveness of a module test suite?

• RQ4 Wh t t f d t i d d t t• RQ4: What type of recommender system is needed to support
the selection of the appropriate testing technique?

15 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

Answers: RQ1Q

RQ1: Which techniques for modeling are applicable in complex
?

Issues to be solved …
Methods and Tools

systems?

Issues to be solved …
• Usability of modeling techniques

• Different levels of abstraction in

• Model-based testing process

• CECIL (Cause-Effect Coverage
Incorporating LinearDifferent levels of abstraction in

behavioral specifications

• Application of n-dimensional

Incorporating Linear
boundaries) - Test Methodology

• IDATG (Integrating Design and
equivalence classes

• Test-case generation for
diff t t t

IDATG (Integrating Design and
Automatic Test-case
Generation)

different targets • Model transformation from
UML2 to Input/Output Symbolic
Transition Systems

16 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

a s t o Syste s

Test-case generation methodsg

Graph-oriented methods
• Directed graph with cycles

a set of edges which connect two nodes in a defined order from– a set of edges, which connect two nodes in a defined order, from
a start node to a goal-node

– A finite order of nodes and edges is called a graph

• The coverage of all states and events by test cases is a search in a
graph for paths, from a start node to a goal nodeg p p , g

Data-oriented methods
• Generation of test data applying the methods of equivalence classes

/ boundary values, semantic conditions etc.

17 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

Model-based testing with IDATG (Integrating
Design and Automatic Test-case Generation)Design and Automatic Test-case Generation)

IDATG
Test Data

Generation

Test Case
Generation

Requirement
Specification

Low-Level
Specification

Task Flow
Modeling

Test
ExecutionGUI information Execution

Test Execution Tool
(T tP t ®)

recorded with
GUI SpyIDATG is used by

18 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

(e.g. TestPartner®)
http://idatg.siemens.at

IDATG task flow modelingg

• The sequence of test steps for each task can be defined with theq p
Task Flow Editor

• Building Block Concept: Each step may either represent an
atomic step (blue) or an entire sub task flow (yellow)atomic step (blue) or an entire sub task flow (yellow)

• Re-use of building blocks minimizes effort for test maintenance

19 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

Test data generation: the CECIL
methodmethod

CECIL = Cause-Effect Coverage IncorporatingCECIL Cause Effect Coverage Incorporating
Linear boundaries

Test data design method combining the benefits of:Test data design method combining the benefits of:
• Equivalence partitioning
• Boundary value analysisBoundary value analysis
• Cause/effect analysis

Properties:
• Well suited for complex semantic dependencies
• High error-detection potential
• Difficult to apply manually, but can be mostly automated

20 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

Example "Vehicle insurance"p

We want to test an application that calculates the annual insurance
premium for a vehicle (Motorcycle, Car, or Van).

The basic premium depends on the engine power (in HP) and theThe basic premium depends on the engine power (in HP) and the
vehicle type:

Motorcycle
< 25 HP 50 €

Car Van
< 60 HP 100 € 200 €< 25 HP 50 €

25 - 49
HP

75 €

>= 50 HP 100 €

< 60 HP 100 € 200 €
60 - 99 HP 200 € 400 €
>= 100 HP 300 € 600 €

For person groups with a higher accident risk, the premium is 20%
higher. These groups are: all persons older than 65 years, men younger
than 25, and women younger than 21.y g

Only persons aged between 21 and 65 are allowed to drive a van. To
drive a car or motorcycle, a person must be at least 18.

21 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

drive a car or motorcycle, a person must be at least 18.

CECIL Task 1: Problem analysisy

• Identify input variables, their types and definition ranges. y p , yp g
Represent enumeration types as numbers:
- Vehicle Type [0=Motorcycle, 1=Car, 2=Van]yp [y , ,]
- HP [0..9999]
- Age [0 999]Age [0..999]
- Gender [0=Male, 1=Female]

• I t d ff t i bl t i t i lt• Introduce effect variables to express interim results:
- Baseprice (depends on Type and HP)
- Extracharge (depends on Age and Gender)

22 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

CECIL Task 2:
Define causes and effectsDefine causes and effects
• Express dependencies as cause/effect pairs:
ID Cause Effect
SMALL_BIKE Type = 0 ∧ HP < 25 Baseprice = 50 €
MEDIUM_BIKE Type = 0 ∧ HP >= 25 ∧ HP < 50 Baseprice = 75 €y
BIG_BIKE Type = 0 ∧ HP >= 50 Baseprice = 100 €
SMALL_CAR Type = 1 ∧ HP < 60 Baseprice = 100 €
MEDIUM_CAR Type = 1 ∧ HP >= 60 ∧ HP < 100 Baseprice = 200 €
BIG CAR Type = 1 ∧ HP >= 100 Baseprice = 300 €BIG_CAR Type = 1 ∧ HP >= 100 Baseprice = 300 €
SMALL_VAN Type = 2 ∧ HP < 60 Baseprice = 200 €
MEDIUM_VAN Type = 2 ∧ HP >= 60 ∧ HP < 100 Baseprice = 400 €
BIG_VAN Type = 2 ∧ HP >= 100 Baseprice = 600 €
OLD_PERSON Age > 65 Extracharge = 20%
YOUNG_MALE Gender = 0 ∧ Age < 25 Extracharge = 20%
YOUNG_FEMALE Gender = 1 ∧ Age < 21 Extracharge = 20%
NORMAL MALE Gender = 0 ∧ Age >= 25 ∧ Age <= 65 Extracharge = 0%NORMAL_MALE Gender = 0 ∧ Age >= 25 ∧ Age <= 65 Extracharge = 0%
NORMAL_FEMALE Gender = 1 ∧ Age >= 21 ∧ Age <= 65 Extracharge = 0%
I_TOO_YOUNG Age < 18 Invalid
I_VAN_TOO_YOUNG Type = 2 ∧ Age < 21 Invalid

23 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

I_VAN_TOO_OLD Type = 2 ∧ Age > 65 Invalid

Rules for causes and effects

C / ff t i ith i d t ff t• Cause/effect pairs are either assigned to an effect
variable or to the invariant Invalid
All ff ti th ff t i bl t b• All causes affecting the same effect variable must be
mutually exclusive

• E h ibl i t bi ti t ti f tl• Each possible input combination must satisfy exactly
one cause for each effect variable or be Invalid.

• All t b li i t• All causes must be linear in nature
• It is not necessary to repeat the definition ranges

(e g Age > 65 automatically assumes Age ≤ 999)(e.g., Age > 65 automatically assumes Age ≤ 999)

24 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

Generation of test data

• Use a linear programming algorithm to find boundary p g g g y
points of the intersection space

e.g., (HP, Type, Age, Gender):
{(0, 0, 66, 0), (24, 0, 66, 0), (24, 0, 999, 0), (24, 0, 999, 1)}

• Calculate the expected results using the values of the
effect variableseffect variables

e.g., Baseprice = 50€, Extracharge = 20% => Premium = 60€

• Repeat with other cause combinations until all causes are• Repeat with other cause combinations until all causes are
covered at least once or no more combinations are
possiblepossible

25 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

User interface of IDATG tool

26 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

Answers: RQ2Q

RQ2: Which probabilistic randomized testing technique for software

Issues to be solved … Methods and Tools

safety validation is applicable?

• Classical testing may be
insufficient because of
• too few test cases

• Statistical Testing is an
expansion of Model-Based
Testing that deals with state• too few test cases

• too short test time
Testing that deals with state-
transition diagrams

• Statistical analysis tools provide
• Test case explosion

y p
the ability to derive indicators on
SW quality properties
e g fault residual availabilitye.g. fault residual, availability,
performance

27 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

Randomized task flows

U til t k fl l d t t i l• Until now, task flows were only used to express typical
user scenarios

N id• New idea:
−Generate long random sequences of building

blocksblocks
−Consider semantic conditions in order to avoid

invalid test cases

• Mapping of task flows to a conventional formal model
(EFSM) is necessary() y

• EFSM = Extended Finite State Machine
= FSM + variables, conditions, updates

28 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

, , p

Conversion of task flows into EFSM

M i f t /bl k t t t /t iti• Mapping of steps/blocks to states/transitions

• Task flows presuppose a lot of implicit information
i th b h i f GUI bj tconcerning the behaviour of GUI objects

• This implicit information must be made explicit in the
form of conditions and updates

• Task flows are not a complete behavioural model =>
some details have to be supplied

29 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

Generation strategiesg

Random WalkRandom Walk
• Simplest and cheapest method

C t b f• Coverage cannot be foreseen

• Search often runs into dead ends

Explicit Search / Model Checking
• Expensive (state space explosion)

• A certain coverage level can be guaranteedA certain coverage level can be guaranteed

• Intelligent search algorithm finds feasible paths out of
dead ends

30 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

dead ends

Combination of strategiesg

Hybrid Approach
(developed by Dr. Gordon Fraser, TU Graz)

U R d W lk til hi l l• Use Random Walk until reaching a local
minimum („dead end“)

U E li it S h f fi di th t• Use Explicit Search for finding a path out
of the minimum

• Repeat until the desired length or
coverage criterium has been reached

31 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

Example: ATMp

32 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

Answers: RQ3Q

RQ3: How could error seeding and mutation analysis be used to
h k h ff i f d l i ?

Issues … Methods and tools

check the effectiveness of a module test suite?

• A program is well tested if all
relevant faults are detected and
removed

• Objective: How well does a test-
suite perform at detecting faults?

• Given:JUnit test suite and programremoved
• Coupling Effect (DeMillo et al.,

1978): test cases that detect
i l f lt l d t t

• Given:JUnit-test suite and program
that passes the test-suite

• Create mutant programs
simple faults can also detect
more complex faults

• Competent Programmer

• Run test-suite against each mutant

• Mutation Score: Ratio
killed mutants / total mutantsCompetent Programmer

Hypothesis (Acree et al., 1979):
Programs are close to being
correct

killed mutants / total mutants

http://www.ise.gmu.edu/~ofut/mujava/

33 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

correct

Answers: RQ4Q

RQ4: What type of recommender system is needed to support the
l i f h i i h i ?

Issues … Methods and tools

selection of the appropriate testing technique?

• Interpretation of textual
specification and creation of a
formal model

• Charactarisation schema for
testing techniques of Vegas (S.
Vegas: Identifying the Relevant formal model

• Context-dependent selection of
the appropiate test-case design

th d

g y g
Information for Software Testing
Technique Selection; Proceedings of
the 2004 International Symposium

method
• Usabilty aspects in respect to

domain experts

on Empirical Software Engineering)

• Development of prototype of
recommending system indomain experts recommending system in
SoftNet

34 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

Conclusion and outlookConclusion and outlook

• Verification and validation of safety-critical systems is the main
h t i i S ftN tresearch topic in SoftNet

• Model-based testing and automatic test case generation
techniques have to support different levels of abstraction q pp

• Statistical or randomized testing is currently implemented in the
tool IDATG

• Mutation analysis was successfully used in determining the
error-detection capability of different test suites

Next steps:
• Development of a recommender system for the selection of test-

case design techniques
• Case studies and evaluation of methods / tools at Siemens

35 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

Literaturete atu e

• Beer A., Mohacsi S., “Efficient Test Data Generation for Variables with Complex
D d i ” IEEE I t C f S ft T ti V ifi ti d V lid tiDependencies”, IEEE Int. Conference on Software Testing, Verification and Validation
(ICST) in Lillehamer, April 2008

• Dura H., Madeira H., “Emulation of Software Faults: A Field Data Study and a Practical
Approach ” Published online 6 Nov 2006Approach, Published online 6 Nov. 2006.

• Fraser G., Peischl B., Wotawa F., “A Formal Model for IDATG Task Flows“,
SNA-TR-2007-P2-03, SoftNet-Report, 2007

• IEEE Computer Society, “IEEE Standard Classification for Software Anomalies”,
December 2, 1993

• Mohacsi S., “Practical Experience with Test Case Generation: Higher Product Quality -
Reduced Test Costs“ 1 SoftNet Workshop Testen und Verifikation“ 7 11 2007 an derReduced Test Costs , 1.SoftNet-Workshop „Testen und Verifikation , 7.11.2007 an der
TU in Graz, 2007

• Peischl B., “A Survey on Standards and Certification of Safety Critical Software“, SNA-
TR-2006-01, SoftNet-Report, 2006TR 2006 01, SoftNet Report, 2006

• Robinson-Mallett, Ch., “An Example Application of Statistical Testing Distributed
Software“, Fraunhofer Institute for experimental SW engineering, 2007

Th h Ch “M d l T f ti f UML St t M hi t I t/O t t

36 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

• Thurnher Ch., “Model Transformation from UML State Machines to Input/Output
Symbolic Transition Systems”, master thesis at TU Vienna, 2008

Contact Information
Armin Beer

Phone: +43 (0) 676 5055670
EMail: armin.beer.ext@siemens.com

37 Workshop “Entwicklung zuverlässiger Software-Systeme” © Siemens IT Solution and Services 2009

