Safety Critical Systems with ASCET

/]
C

Presentation title | Author | Department | 13 February 2008 | Strictly confidential

© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.




Safety Critical Systems with ASCET

Agenda

e Introduction to ASCET
e Different types of Models
e Fixed point arithmetic

ASCET models vs. UML

ASCET models vs. Ada
e Fixed point arithmetic
e Exceptions

-— r\f\lﬂf\,ll lf\:l\lﬂ
® CLUIIVIUSIVUII

Safety Critical Systems with ASCET | Gunter Blache | ETAS GmbH May, 19t 2009

© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.




Safety Critical Systems with ASCET
Introduction to ASCET

f' Block Diagram Editor for: Tumrechnung [ Main ] Project: P_Drehzahlvorgabe [PC/Implementation] -> Contextprojed
File Edit Wiew Insert Build Extras Tools Window Help Component Element QA-Partmer

Specify the model: ([l ] | [z&n 810 [@fher0 EHfsoma =)
domain specific ATy rrp——
language for the e
automotive industry can

= EJmain
L .Q] [{F] Iberechnung [

Generate code

/* public Iberechnung [] */
void IUMRECHNUNG_IMPL_Iberechnung(void)
{
: sint32 _tl1sint32;
Run COde In /* Iberechnung: sequence call #1 */
simulation on a PC _t1sint32 = ((uint32)(ITUMRECHNUNG_ IMPLinstance->A->val * 125) >> 7) /
IUMRECHNUNG _IMPLinstance->B->val;
* assignment to C: min=0, max=65535, hex=4phys+0, limit=(maxBitLength:
or deploy on /* assi C: min=0 65535, h hys-+0, limit=(maxBi h
true, assign: true), zero incl.=true */
embedded IUMRECHNUNG _IMPLinstance->C->val =
controller (_t1sint32 <= 15) ? ((uint32)_t1sint32 << 12) : 65535;
}

Safety Critical Systems with ASCET | Gunter Blache | ETAS GmbH May, 19t 2009

© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.




Safety Critical Systems with ASCET
Different types of Models

T Block Disgram Editer for: ContralAlgorithm [ Main ] Praject: _4_Controller_C167 [Freescale MPCSE0/0bject]
Fle EM Vow Dot Bukd Extras Took  Window  Help

L EIRY: ] FRE - U s T Ve

T State Maciims dites Sor: Angits_ WhwelSimondl TR | Bestermachbon | rvioct: Aot WiwelSpendC TR DITMAT [P/ lermentationi

State machine
diagram

o er bk aborss b fune the beharvior from

e #10 comtrober.

Block diagram
(Data flow, control flow,
00-modeling, hierarchies)

. " |
; | {7 | |
8- ringuinipsibud | oo f
F B ey Discor | Fle Edt View Insert Buld Extras Tools Window Hel [
] | =
| Offsat_pen .0 e
| 2 FICEE =N
| = SR
| 2 3-3-8 ESDL model description
| )| ] . . . . L
| wel=emol With syntax highlighting i
I£ =
T RBEE [ S _ﬂ_a Al |
[Ipaa 2 B @ sef:adaptive L1 Governor Al ACLPoS1Llon = RyLOmElements curlime/rRythmLength, ;;r | 4
— — — T —_ actPoskion: udisc - ! '_ = »
Type s e — &2 M Buffer_Auxiiarray[cont] 5 if(curTime »>= RythmLength)
8 check_poskion T ot i ki 8 curTime:zcont Bi— {
T chooonk EEr i Rl sl curValues:cont 7 //reset the counter, restart the music
T L
T @ Vet M ron E, PIDTL el dre:dt 8 curTime = 0.0;
H g e gl @ T ook rais e @ Hightn:zcont L o)
nf_. rarget_val:cont @12 T ot T T B Lowin::zcont 10
@[] eovsni] @ T ot i d Lad000 = B rythmzarray{cont] 11 curValue = Rythm[actPosition];
et =l |= 0 @ RythmElements::udisc 12 = =
. N — © B e codade aescripuon
] » i
Main RythnElements

= &b Input (InL::conksInz: conk)
& 2 1t cont [In]
€ (2] 2z:icont [In] < i |

RythmLength

e ]

syntax highlight

3
L1 b output ) returniicont = = pr—
B e B Ie n t b I e = [ returr ot %) | lne 12 1 Coluron 2 ol bl
] outire | i, o b p & b P i
z 2. o 1 o o o
THEE = = |
o O
£ iy @ seff::Class_Boolsan_Tabls
=t & It P p
£ .Xl::‘ug T_7 *20/8) / 100) * pem
2 W %o s P v B p re7_7 #2048 "
T M x3:og T o g o P
T M xaiilog 7. 1 i 1 1 o o
= [H BooleanTable
H L}‘L() return: log - Tnputs | Outputs - Combinations
L L] returnilog o 5 \
=1 Gk v2 () returm: o [4 =B B B
ey
L U rewurnilog Compiets Rows | checkmatrix || Difault Matrix
| | | | |? b |
|& self |8 Data & 1mpl " = — - ;
- — > -

Safety Critical Systems with ASCET | Gunter Blache | ETAS GmbH May, 19t 2009

© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.




Safety Critical Systems with ASCET
Fixed point arithmetic

Embedded control units are resource constrained:
Floating point arithmetic is expensive => Fixed point arithmetic is used

The model contains the specification of the variables:

rTransformation

Value range, Precision and Data type i <]
Conversion fiphys) = ({0 +4 = phys) / (1 +0 = phys))
—Model Implementation
. . . . Type  cont Type  [uint1s =l
Calculation is specified on the physical model: wo [0 I
Max | 16383.75 Max 65535
C — a + b; [~ Zero notinduded

The code generator take care of the implementation details

Safety Critical Systems with ASCET | Gunter Blache | ETAS GmbH May, 19t 2009

© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.




Safety Critical Systems with ASCET
ASCET vs. UML

UML is primarily a design notation:

e Many different diagrams on various levels of abstraction
e Language independent

e Does not contain executable behaviour

ASCET models:

e Fewer diagrammatic styles, and no higher-level abstractions like
package or deployment diagrams

e Have both intrinsic value and added value in combination with code
generation

e Are executable on multiple different platforms
e From a 64-hit PC to a 16-bit microcontroller

e Natively supports the C programming language

Safety Critical Systems with ASCET | Gunter Blache | ETAS GmbH May, 19t 2009

© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.




Safety Critical Systems with ASCET
ASCET vs. Ada: Fixed point types

) 2 nd

Ada has a strong type system

This extends to fixed-point, requiring different types for values of
different precision.

Precision/intervals are specified, data type is chosen by the compiler.

type VOLT i1s delta 0.125 range 0.0 .. 255.0;

ASCET contains one generic model type “continuous

e Equivalent to “real” in Ada P
 Precision/intervals and data types Formuia IN_sx =
are specified. N ffphi}m; i:;;;hwﬂﬂ%*nhwn
e Model type is realized as “fixed” Type ot Type  untis El
« or “float” in the implementation - :3335 " ::5535
[T Zero notinduded

Safety Critical Systems with ASCET | Gunter Blache | ETAS GmbH May, 19t 2009

© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.




Safety Critical Systems with ASCET
ASCET vs. Ada: Fixed point arithmetic

Ada:

e Arithmetic between fixed point types is only allowed if they have the
same precision, except for multiplication and division, where the target
precision must be specified.

e Semantics are specified by the LRM, but complex (compiler is only
required to provide at /east the specified precision - the “small” of the

type)

ASCET:

e Arithmetic between all “continuous” expressions is allowed. The code
generator takes care of the details: overflow protection, re-scaling,
selection of precision in complex expressions.

e Semantics are defined by the code generator
e And the code generator is proven by use

Safety Critical Systems with ASCET | Gunter Blache | ETAS GmbH May, 19t 2009

© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.




Safety Critical Systems with ASCET
ASCET vs. Ada: Exceptions

Ada throws runtime exceptions in dangerous situations:
e Array index violations

e Division by Zero

e Integer overflow

e Assignment interval mismatch

The ASCET code generator implements domain-specific default behavior:

e Division by Zero is protected, returning the max value a b 2%
e Integer overflow is avoided 4

e Saturated arithmetic on specific microcontrollers is supported 2 2 .

e Assignments are limited to the specified range where necessary
e Array indices are not limited — cannot assume a default behavior.

e Array index violations are not expected to occur in practice due to checks in the
model or extensive testing.

X 2

Safety Critical Systems with ASCET | Gunter Blache | ETAS GmbH May, 19t 2009

© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.



Safety Critical Systems with ASCET
ASCET vs. Ada: Conclusion

Ada
e is a general purpose language
e Provides basic support for safe fixed point arithmetic
e |If the program compiles, it probably does the right thing
e Requires the programmer to care about possible overflows, re-scaling etc.

ASCET

e is a domain specific language for control algorithms in the automotive industry
e Enables early validation of algorithms using floating point arithmetic

e Provides convenient fixed point arithmetic

e Code generator makes sensible decisions for the usual problems of overflows, re-
scaling etc.

e Generation of fixed point arithmetic is done consistently
e Models need to be tested to see if the achieved precision is sufficient

Safety Critical Systems with ASCET | Gunter Blache | ETAS GmbH May, 19t 2009

© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.



Safety Critical Systems with ASCET

Questions ?

Safety Critical Systems with ASCET | Gunter Blache | ETAS GmbH May, 19t 2009

© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.




