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Safety Critical Systems with ASCET
Introduction to ASCET
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Generate code

/* public Iberechnung [] */
void IUMRECHNUNG_IMPL_Iberechnung(void)
{
: sint32 _tl1sint32;
Run COde In /* Iberechnung: sequence call #1 */
simulation on a PC _t1sint32 = ((uint32)(ITUMRECHNUNG_ IMPLinstance->A->val * 125) >> 7) /
IUMRECHNUNG _IMPLinstance->B->val;
* assignment to C: min=0, max=65535, hex=4phys+0, limit=(maxBitLength:
or deploy on /* assi C: min=0 65535, h hys-+0, limit=(maxBi h
true, assign: true), zero incl.=true */
embedded IUMRECHNUNG _IMPLinstance->C->val =
controller (_t1sint32 <= 15) ? ((uint32)_t1sint32 << 12) : 65535;
}
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Different types of Models
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Fixed point arithmetic

Embedded control units are resource constrained:
Floating point arithmetic is expensive => Fixed point arithmetic is used

The model contains the specification of the variables:

rTransformation

Value range, Precision and Data type i <]
Conversion fiphys) = ({0 +4 = phys) / (1 +0 = phys))
—Model Implementation
. . . . Type  cont Type  [uint1s =l
Calculation is specified on the physical model: wo [0 I
Max | 16383.75 Max 65535
C — a + b; [~ Zero notinduded

The code generator take care of the implementation details
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Safety Critical Systems with ASCET
ASCET vs. UML

UML is primarily a design notation:

e Many different diagrams on various levels of abstraction
e Language independent

e Does not contain executable behaviour

ASCET models:

e Fewer diagrammatic styles, and no higher-level abstractions like
package or deployment diagrams

e Have both intrinsic value and added value in combination with code
generation

e Are executable on multiple different platforms
e From a 64-hit PC to a 16-bit microcontroller

e Natively supports the C programming language
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Safety Critical Systems with ASCET
ASCET vs. Ada: Fixed point types

) 2 nd

Ada has a strong type system

This extends to fixed-point, requiring different types for values of
different precision.

Precision/intervals are specified, data type is chosen by the compiler.

type VOLT i1s delta 0.125 range 0.0 .. 255.0;

ASCET contains one generic model type “continuous

e Equivalent to “real” in Ada P
 Precision/intervals and data types Formuia IN_sx =
are specified. N ffphi}m; i:;;;hwﬂﬂ%*nhwn
e Model type is realized as “fixed” Type ot Type  untis El
« or “float” in the implementation - :3335 " ::5535
[T Zero notinduded
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ASCET vs. Ada: Fixed point arithmetic

Ada:

e Arithmetic between fixed point types is only allowed if they have the
same precision, except for multiplication and division, where the target
precision must be specified.

e Semantics are specified by the LRM, but complex (compiler is only
required to provide at /east the specified precision - the “small” of the

type)

ASCET:

e Arithmetic between all “continuous” expressions is allowed. The code
generator takes care of the details: overflow protection, re-scaling,
selection of precision in complex expressions.

e Semantics are defined by the code generator
e And the code generator is proven by use
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ASCET vs. Ada: Exceptions

Ada throws runtime exceptions in dangerous situations:
e Array index violations

e Division by Zero

e Integer overflow

e Assignment interval mismatch

The ASCET code generator implements domain-specific default behavior:

e Division by Zero is protected, returning the max value a b 2%
e Integer overflow is avoided 4

e Saturated arithmetic on specific microcontrollers is supported 2 2 .

e Assignments are limited to the specified range where necessary
e Array indices are not limited — cannot assume a default behavior.

e Array index violations are not expected to occur in practice due to checks in the
model or extensive testing.
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ASCET vs. Ada: Conclusion

Ada
e is a general purpose language
e Provides basic support for safe fixed point arithmetic
e |If the program compiles, it probably does the right thing
e Requires the programmer to care about possible overflows, re-scaling etc.

ASCET

e is a domain specific language for control algorithms in the automotive industry
e Enables early validation of algorithms using floating point arithmetic

e Provides convenient fixed point arithmetic

e Code generator makes sensible decisions for the usual problems of overflows, re-
scaling etc.

e Generation of fixed point arithmetic is done consistently
e Models need to be tested to see if the achieved precision is sufficient

Safety Critical Systems with ASCET | Gunter Blache | ETAS GmbH May, 19t 2009

© ETAS GmbH 2008. All rights reserved. The names and designations used in this document are trademarks or brands belonging to their respective owners.



Safety Critical Systems with ASCET

Questions ?
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