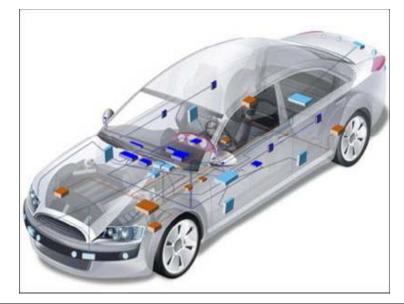
IT Security in Automotive Software Development

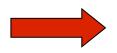
Sandro Schulze, Mario Pukall, Tobias Hoppe


Outline

- Automotive Systems
- Motivation
 - IT Security
 - Software Development
- Specifying Security Requirements
 - Modeling Functional Dependencies
 - Formalizing the Propagation of Security Requirements
- Conclusion

Automotive System

- Consists of a multitude of embedded systems (ECUs)
- Constraints with respect to resources, e.g., memory, processor etc.
- Hard real-time requirements in the dimension of ~ 10 ms
- Communication via bus protocols (CAN, LIN, MoST)
 → no authentification
- Functionality realized by software



IT Security in Automotive SW

Motivation – IT Security

- Automotive system is similar to networked IT system → similar problems like in desktop-IT systems
- Additional vulnerabilities caused by new technologies (e.g., Car-2-Car)
- Attacks are possible
 - From inside, e.g., CDs, wireless communication
 - From *outside*, e.g., by adding new devices
- Mostly, attacks aim at manipulating the software

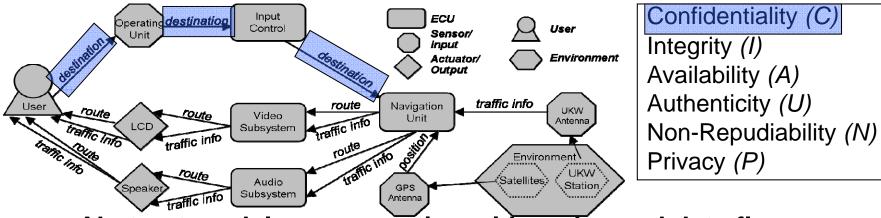
IT security has to be considered during SW development process

Motivation – Software Development

- Demand for efficient SW development
 - Decreasing development costs
 - Decreasing the complexity of the system
- Different approaches exist
 - Software Engineering concepts, e.g., software product lines (SPLs)
 - Model driven development
 - Requirements Engineering
- IT security not considered in this context → retrofitted code for known vulnerabilities
- Increases complexity and risk of IT security attacks

Specifying Security Requirements

- Idea: IT security in early stages of SW development
- Approach divided into two parts
 - Modeling functional dependencies
 - Formalizing the propagation of IT security requirements
- Objective: security requirements in requirements engineering (RE) stage
 - Early specification → usage during design and implementation
 - Model-based approach → integrated into systems engineering process


Modeling Functional Dependencies (1)

- Automotive HW (e.g., ECUs) take part in several functionalities → dependencies between several devices
- Logical view on AS enables investigation of functional dependencies
 - Different degrees of granularity
 - Possible vulnerabilities can be detected "visually"
- *Function Nets (FN)* as modeling approach
 - Reduces modeling complexity
 - Focus on functional/logical view
- Supported by standard modeling languages, e.g., SysML

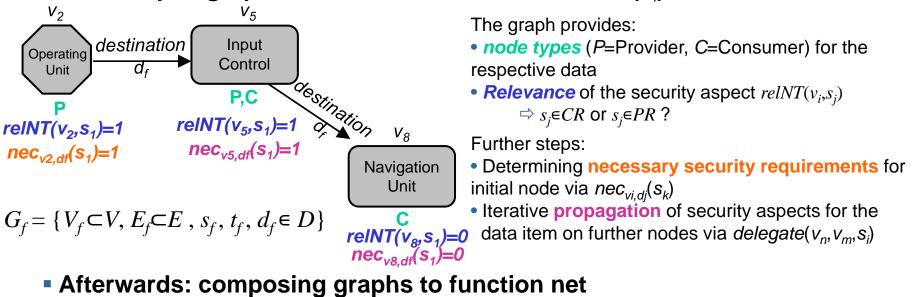
Modeling Functional Dependencies (2)

Example

- Abstract model representation with nodes and data flow
- Can be divided into *graphs,* representing certain features
- Security requirements depend on
 - Data item (characterizing the graph)
 - Node type (Consumer or Provider)

Formalization

- Target: specifying security requirements for certain components based on data items
- Idea: enhancing function nets by security requirements
- Exploiting functional dependencies for propagation of security requirements
- Approach:
 - Dividing function net into graphs (data-driven)
 - Determine security requirements for single graphs (using formalization)
 - Composing graphs to function net
 - Evaluating security requirements for the whole automotive system


Formalization – Basis Definitions

- Set of all vertices (nodes), e.g., ECUs: $V = \{v_1, \dots, v_{nv}\}$
- Set of all *data items*: $D = \{d_1, \dots, d_{nd}\}$
- Set of all edges: $E = \{e_1, \dots, e_{ne}\}$ where
 - A triple $e_m = \{v_j, v_k, d_m\}$ describes a certain edge with d as exchanged data
 - $\{v_i, v_k\} \in E \rightarrow$ a pair of connected vertices
- Set of all graphs: $G = \{G_1, \dots, G_{ng}\}$ with
 - $G_m = \{V_m \subset V, E_m \subset E, s_m, t_m, d_m \in D\}$ as a certain graph
 - Functions $s_m, t_m: E \mapsto V$ assigning source/target vertices to the respective edges
- Set of all *function nets*: $F = \{f_1, ..., f_{nf}\}$ with $f_i = \{G_i \subset G\}$ as a particular one
- Set of all security aspects: $S = \{C, I, A, U, N, P\}$
 - Consumer $\rightarrow CR \subset S = S / \{C, P\}$
 - **Provider** \rightarrow *PR* \subset *S* = *S* / {*I*, *A*, *U*}

Formalization – Propagation of Security Requirements

- Precondition → function nets for whole AS available
- Objective: specifying security requirements of a whole graph by exploiting functional dependencies
- Example: graph for the data item "destination" (d_f)

Vertices/components responsible for countermeasures?
 ⇒Future research

Conclusion/Future Work

- Automotive systems exhibit vulnerabilities regarding (software) manipulation → importance of IT security
- To be considered *early* in software development process
 → often neglected
- (model-based) approach for specifying security requirements
- Evaluating the approach in the context of domain-specific models (e.g., Simulink)
- Usage of sophisticated graph concepts (*attributed, typed*)
- Managing composed data
- Draw conclusions regarding suitable countermeasures

Thank you !

Project page: http://omen.cs.uni-magdeburg.de/automotive/cms/

Questions? Notes? Advices?

