
T
his issue is focused on the Internet of Things and
the security issues that arise when interconnecting
billions of devices, ranging from coffee makers to
power grids. This article looks at the subject from

a specific and rather basic perspective: Which language(s)
should you choose to develop the software, where “software”
means both the embedded code that runs the Things and the
system programs that manage the networks, etc.? Choice of
language is important since it affects the system’s reliability,
security, and performance, as well as the ease or difficulty in
adapting the software as requirements change.

More specifically, this article compares C and Ada, sum-
marizing their strengths and weaknesses and suggesting when
to use (or not use) each. These two languages are interesting
to look at: C because it’s often the default choice for real-time
and systems programming, and Ada because it has a successful
(but not as well known) record in these same areas.

C and Ada have gone through various updates since their
inception. I’ll use the most recent version of each—C 111 and
Ada 20122—as the basis for the comparison. These reflect how
the languages are evolving to meet current and future techno-
logical trends and challenges, even though at present it’s more
typical to find earlier versions of the languages in use.

C

In any kind of assessment, it always helps to go back to first
principles. What were the main design goals for each language?
The introduction to the 1999 version of the C standard3 distilled
the “spirit” of C into a small set of objectives, which have guided
and constrained both the original design and each revision:
• Trust the programmer.
• �Don’t prevent the programmer from doing what needs to be

done.
• Keep the language small and simple.
• Provide only one way to do an operation.
• Make it fast, even if it’s not guaranteed to be portable.

In keeping with these principles, C offers various data
types and data-structuring facilities (arrays, structs, pointers,
unions, enums) with straightforward and efficient implemen-
tation, conventional algorithmic features (statements, expres-
sions, functions), and modest modularization mechanisms
(header files with function prototypes, #include directive,
preprocessor).

Standard header files support dynamic memory manage-
ment (malloc, free), a minimal exception mechanism (setjmp,
longjmp), string handling, numerics, input/output, interna-
tionalization/locales, operating-system interfacing, and other
services. Standard (but optional) and C++ compatible support
for concurrent programming, including features that help
exploit multicore platforms, have been introduced in C11. It
specifies an explicit memory model, and supplies low-level
facilities for thread management and communication.

By intent, C has some significant omissions. It doesn’t pro-
vide generic templates (which can be approximated in part by
the preprocessor), programmer-defined operator/function
overloading, or object orientation, and its encapsulation sup-
port (“information hiding”) is rudimentary.

In short, C is very much a WYSISWYG (“What You See Is
What You Get”) language. When you write a C program, you
have a good idea of what the resulting compiled code and data
will look like. Thus, C becomes a typical choice for low-level
software that needs to interact directly with the hardware. How-
ever, a simple WYSIWYG language has two major drawbacks:

• It doesn’t easily scale up to very large systems.
• In its focus on efficiency, it can sacrifice checks that are use-

ful or necessary for reliability, safety, or security.
To somewhat address the latter point, “safe” subsets of C

have been proposed over the years. Perhaps the best-known
is MISRA C,4 originally intended for automotive software but
applicable to other domains as well. Static-analysis tools such
as lint and a variety of commercial products have been used to
detect potential vulnerabilities, although the language’s weak

Comparing
Ada and C
Both languages approach the reliability versus efficiency tradeoff from different angles,
but each has a place in embedded-systems programming.

Engineering Essentials
BENJAMIN M. BROSGOL, Ph.D. | Senior Technical Staff, AdaCore
www.adacore.com

type checking makes this more dif-
ficult than for other languages. And
various guidelines have been pub-
lished to facilitate secure coding.5

C11 has attempted to address
some of the security issues via lan-
guage features and libraries. For
example, the optional Annex K
(Bounds-checking interfaces) pro-
vides alternative versions of various
standard functions, thus helping
to prevent certain forms of buffer
overflow as well as other vulnerabili-
ties. The optional Annex L (Analyz-
ability) constrains some forms of
undefined behavior to be bounded,
with the requirement that the imple-
mentation not perform an out-of-
bounds store.

Will these new features be widely
implemented, and will program-
mers use them? Time will tell. But
in my opinion, they look like a
patch that may mitigate some vul-
nerabilities but doesn’t alter the
original language philosophy. C
wasn’t designed for programming
large-scale high-integrity applica-
tions. It’s often selected not based
on fitness for purpose, but because
programmers know it (or it fits
smoothly into an organization’s
software-development infrastruc-
ture), or because of perceived inef-
ficiencies in other technologies.

ADA

Ada is very much at the other end
of the spectrum. Perhaps a varia-
tion of C’s principles serves as a first
approximation to the “spirit” of Ada:
• �Trust the programmer, but veri-

fy through appropriate checking
since programmers are human and
make mistakes.

• �Prevent the programmer from
doing what shouldn’t be done.

• �Keep the language kernel small
and simple, but provide extension
mechanisms in order to increase
expressiveness.

• Provide one principal and intuitive

31GO TO ELECTRONICDESIGN.COM30 FEBRUARY 2016 ELECTRONIC DESIGN

AN ADA PACKAGE

THIS CODELIST ILLUSTRATES a simple Ada package. The package specification, on the

top, defines the Vector type as an array of Integer values. Different objects of this type can

have different bounds. The Max function returns the maximum value in its parameter V. Its

precondition is that V contains at least one element. Its post-condition captures the func-

tion’s required semantics—the returned value has to be at least as large as every element in

V, and it must be an element of V. The Negate procedure performs the unary “-“ operation

on each element in its parameter V. Its pre-condition (tao avoid overflow) is that no element

can be the smallest Integer value. Its post-condition captures the procedure’s semantics;

V’Old is the value of V at the point of call. The contracts shown are appropriate for use with

formal methods, so that they’re verified statically, or they could be enabled as run-time

checks to support debugging.

The package body contains the implementation of the two subprograms. V’First is the

index of the lower bound of V, and V’Last is the index of the upper bound. The “for” loop

in Negate illustrates the ability to iterate over a collection (here an array) without explicitly

indexing. Note that Ada uses “:=” for assignment, “=” for equality, and “/=” for inequality.

package Math_Utilities is
 type Vector is array(Positive range <>) of Integer;

 function Max(V : Vector) return Integer
 with
 Pre => V'Length>0, -- V cannot be empty
 Post => (for all Element of V => Max'Result >= Element) and
 (for some Element of V => Max'Result = Element);

 procedure Negate(V : in out Vector)
 with
 Pre => (for all Element of V => Element /= Integer'First),
 Post => (for all I in V'First .. V'Last => V(I) = -V'Old(I));
end Math_Utilities;

package body Math_Utilities is
 function Max(V : Vector) return Integer is
 Current_Max : Integer := V(V'First);
 begin
 for I in V'First+1 .. V'Last loop
 if V(I) > Current_Max then
 Current_Max := V(I);
 end if;
 end loop;
 return Current_Max;
 end Max;

 procedure Negate(V : in out Vector) is
 begin
 for Element of V loop
 Element := -Element;
 end loop;
 end Negate;
end Math_Utilities;

Engineering Essentials

way to do an operation.
• �Make it reliable and portable, and depend on the compiler to

produce efficient code.
More generally, Ada’s main goals were succinctly specified in

the introduction to the first version of the language standard:
“Ada was designed with three overriding concerns: program

reliability and maintenance, programming as a human activ-
ity, and efficiency.”

More specifically, Ada was designed from the outset to take
advantage of the breakthroughs in software engineering and
programming methodology that occurred in the 1970s, with
a focus on support for embedded real-time applications. The
emphasis was on achieving confidence in program reliability
(correctness), through features that include checks either stati-
cally or at run time.

Ada is a strongly typed extensible language, with facilities
to define new types in various categories: integers, floating
point, fixed point, enumeration, arrays, records (structs), and
access types (pointers). Unlike C, Ada allows the definition of
constrained subranges of scalar values, and checks ensure that
objects aren’t assigned out-of-range values. Subrange informa-
tion is very useful to human readers and static-analysis tools.

Ada includes traditional algorithmic features, with a simple
set of statements and with code modularization through sub-
programs (functions). It also has facilities for “programming
in the large”: encapsulation/data abstraction, separate com-
pilation, packages (somewhat analogous to C header and
code files), subprogram and operator overloading, generic
templates, and full support for object-oriented program-
ming (OOP). Ada also includes built-in features for exception
handling and concurrency, including a structured feature for
state-based mutual exclusion that helps avoid race conditions.

The predefined environment of Ada includes packages
for character and string handling, I/O, numerics, containers,
and operating-system interfaces. Ada also defines an annex
with standard support for interfacing with other languages
(including C), and optional specialized-needs annexes cover-
ing systems programming; real-time, distributed, and infor-
mation systems; numerics; and safety and security (high-
integrity systems).

Ada 2012 introduced contract-based programming features
(pre- and post-conditions for subprograms, invariants for
encapsulated types). This significant enhancement in effect
embeds low-level requirements into the source code, with
checks performed either at run time or (with appropriate
tool support) statically. The Ada example (see “An Ada Pack-
age”) illustrates the use of pre- and post-conditions; an analog
example in C is shown in “C Header and Code File.” Ada 2012
also increased the language’s multiprocessor/multicore sup-
port and added a number of other enhancements.

Ada was intended for embedded systems, and program-
ming at that level may involve getting down-and-dirty with

the hardware—writing interrupt service routines, dealing
with machine addresses and data representations, handling
endianness issues, etc. With Ada, programmers can do all
those things—one goal of the Systems Programming Annex is
to give the programmer the tools to do anything in Ada that’s
possible in assembly language.

All of this sounds like a large and complex language. Indeed,
the inclusion of generics, OOP, and exceptions makes Ada
quite a bit more sizable than C, although subtleties in features

such as sequence points don’t make C the simple language as
is commonly advertised. Skeptics might jest that, while a C
program is WYSIWYG, Ada code seems more in the WTF
category (acronym intentionally left unexpanded).

QUESTIONS SURROUNDING ADA

Doesn’t Ada have some performance challenges? And if Ada
is supposed to be used for safety-critical or high-security sys-
tems, doesn’t the semantic complexity get in the way? How do
you certify a system where you need to show traceability from
requirements down to object code, or where the implementa-
tion’s run-time libraries are subject to the same certification
requirements as the application software?

These are fair questions. Ada, like any other general-
purpose language intended for high-integrity systems, needs
to be constrained to a safe subset, only including features with
well-defined behavior and a simple (certifiable) implementa-
tion. Ada actually anticipated this issue and supplies a com-
piler directive (pragma Restrictions) that allows programmers
to specify features that will not be used. If using such a feature,
then the error is detected, generally at compile time but some-
times at run time.

The Ravenscar tasking profile,6 a set of Ada concurrency
features with a small footprint and simple implementation,
is part of the Ada standard and is defined through prag-
ma Restrictions. Implementations can supply one or more
restricted run-time profiles, corresponding to subsets at dif-
ferent levels of generality (and thus different levels of effort
needed for certification).

Another notable example of an Ada subset is the SPARK lan-
guage.7 SPARK 2014, an Ada 2012 subset, is designed to facili-
tate formal proofs of program properties ranging from absence
of run-time errors to compliance with a formally specified set of
requirements. SPARK eliminates features that are hard to verify,
such as pointers, but includes most of Ada’s static semantics.
Projects like the NSA-sponsored Tokeneer effort8 demonstrated
that ultra-high reliability and security is achievable with formal
methods using conventional verification techniques.

CONCLUSIONS

C’s emphasis has always been on performance, and its ben-
efits show up most clearly when this requirement is critical
(for example, in a software product for a competitive com-
mercial market, where a customer’s purchase decision may
be strongly influenced by benchmarks). When reliability,
safety, and/or security are overriding requirements, C has
well-known defects.

Historically, many security holes have been caused by writ-
ing past the end of an array, a bug that’s detected in Ada. Some
can be overcome with external tools (to enforce a “safe” subset
or to detect vulnerabilities), or with the help of the new C11
features. However, the language wasn’t designed with support

for high-assurance systems as a major goal.
Ada’s emphasis has always been on the various “ilities” (reli-

ability, readability, maintainability), and its benefits show up
most clearly when these requirements are critical (for example
in a large, long-lived system where total software lifecycle costs
need to be taken into account). Indeed, Ada (and safe subsets
such as SPARK) has a long and successful usage history in
safety-critical and high-security applications.

So when should Ada not be used? One context is when the
need arises for rapid prototyping or scripting. Consider, instead,
a dynamically typed language such as Python. Another scenario
is when quickness to market is an important goal; then a higher
software defect rate may be an acceptable price to pay.

How about when run-time performance (time, space)
means the difference between a successful product and an
also-ran? It’s certainly possible to obtain efficient code from
Ada, and indeed technologies such as gcc,9 which incorporate
a common code generator for multiple languages, yields the
same performance for Ada and C on language constructs that
have the same semantics. You can also improve efficiency by
avoiding complex features, or by suppressing run-time checks
after verifying through static analysis or sufficient testing that
the checks will not fail.

Note that Ada versus C is not an “either/or” decision. They
actually get along well together, largely due to Ada’s standard
interfacing support. An Ada program can import functions
or global data from C, lay out data structures to have the
same representation as the corresponding C data, and export
subprograms or global data for use by an external C function.
Therefore, a C program can be extended with functionality
provided by Ada, and symmetrically, an Ada program can
invoke C services.

DR. BENJAMIN BROSGOL, a senior member of
the technical staff of AdaCore, has been involved
with programming language design and imple-
mentation for more than 30 years. He was a Dis-
tinguished Reviewer of the original Ada language
specification and a member of the design team for
the Ada 95 revision.

REFERENCES:
1. ISO/IEC 9899:2011. Information technology -- Programming languages -- C.
2. Ada Reference Manual; ISO/IEC 8652:2012(E); Language and Standard Libraries.
Available from www.adaic.org/ada-resources/standards/ada12/.
3. The C Standard Incorporating Technical Corrigendum 1; John Wiley & Sons;
1999.
4. MISRA C:2012 – Guidelines for the Use of the C Language in Critical Systems;
www.misra-c.com.
5. Robert C. Seacord, Secure Coding in C and C++, 2nd Edition; Addison Wesley;
2013.
6. ISO/IEC TR 24718:2004. Guide for the use of the Ada Ravenscar profile in high
integrity systems (2004).
7. SPARK 2014; www.spark-2014.org/.
8. Tokeneer ID Station Public Release Archive. Available from www.adacore.com/
sparkpro/tokeneer.
9. GCC, the GNU Compiler Collection; gcc.gnu.org.

3332 GO TO ELECTRONICDESIGN.COMFEBRUARY 2016 ELECTRONIC DESIGN

C HEADER AND CODE FILES

THE C HEADER and code files correspond to the Ada package

(see “An Ada Package”). The pre-condition for max is mod-

eled by an assert statement in the function body. The other

Ada contracts are omitted, since C doesn’t have quantification

expressions.

One of the semantic differences between Ada and C con-

cerns the treatment of array bounds. In Ada, the bounds are

accessible through the array object via V’First and V’Last, while

in C, the array size needs to be supplied as an explicit param-

eter to the functions.

// math_utilities.h

typedef int vector[];

int max(vector v, int n);
// n is the number of elements in v

void negate(vector v, int n);
// n is the number of elements in v

#include <assert.h>
#include "math_utilities.h"

int max(vector v, int n)
{
 assert(n>0);
 int curmax = v[0];
 for (int i=1; i<n; i++){
 if (curmax < v[i]){
 curmax = v[i];
 }
 }
 return curmax;
}

void negate(vector v, int n)
{
 for (int i=0; i<n; i++){
 v[i] = -v[i];
 }
}

