278

Ada and the Software Vulnerabilities PI‘OJ ect:

the SPARK Annex

Alan Burns, FREng (ed.)

Department of Computer Science, University of York, York YOI SDD UK; Tel: +44 (0)1 904 432779;

email: burns@cs.york.ac.uk

Joyce L. Tokar, PhD (ed.)

Pyrrhus Software, PO Box 1352, Phoenix, AZ, 85001-1352, USA.; Tel: +1 602373 0713;

email: tokar@pyrrhusoft.com

Stephen Baird, John Barnes, Rod Chapman, Gary Dismuikes, Michael Gonzdlez-Harbour, Stephen Michell,
Brad Moore, Luis Miguel Pinho, Erhard Ploedereder, Jorge Real, J.P. Rosen, Ed Schonberg, S. Tucker Taft,

T. Vardanega

Abstract

In a previous article [1] we published the Ada [2]
Annex to the Techmical Report (TR) on software
vulnerabilities [3], developed by ISO/IEC JTC 1/5C
22/WG 23. This article completes this work, with the
annex concerning SPARK [4] .

Keywords: sofiware vulnerabilities,
vulnerability, Ada, SPARK.

1 Introeduction

.S'ofnmre

Software vulnerabilities are defined as a property of a
system security, requirements, design, implementation, or
operation that could be accidentally triggered or
intentionally exploited and result in a security failure [5].
Work on software vulnerabilities and how they enable
-software applications to - be infiltrated and corrupted
continves to be of interest world. Working Group 23 (WG
23) of the Programming Languages Subcommittee (SC 22)
of the International Organization of Standards (ISO) has
recently completed a Technical Report that identifies and
enumerates a collection of software vulnerabilities in
existing programming languages [3]. Annexes to this
document are being developed to identify if the
vulnerabilities defined in the TR exist in various
programming languages.

A workshop was conducted in parallel with the 14
-~ International ~ Conference on Reliable Software
Technologies - Ada-Europe 2009 to initiate the
development of content of an Annex to the Technical
Report that documents its applicability to the Ada and
SPARK programming languages. The results of this
workshop were published in [6]. Another workshop was
conducted in parallel with the 2009 SIGAda conference.

* For completeness, the article republishes and adapts the Introduction
section of [1].

Work continued on this document over the course of 2009
and was completed in a short workshop at the 15%
International Conference on .Reliable Software
Technologies — Ada-Europe 2010. A previous article [1]
published the final draft copy of the Ada Annex to the WG
23 TR submitted to WG 23 for inclusion in the TR. This
article completes the work, providing the SPA_R.K annex
developed by Altran-Praxis.

Note, within the WG 23 TR each vulnerability is assigned a

unique identifier such as RIP for the Inheritance

vulnerability. Since the WG 23 TR was under development
during the work on this Annex and there is an expectation
that more vulnerabilities will be added to the TR, the
sections in the Ada and SPARK annexes include their
corresponding unique identifier in ‘the section heading.

References

[1] Burns, A., Tokar, J. L. (Eds.), Ada and the Software
‘Vulnerabilities Project, in Ada User Journal, Vol. 31,
number 3, September 2010, pp. 191-215.

[2] Taft, S. Tucker, Duff, R. A., Brukardt, R. L, -
Ploedereder, E., Leroy, P, Ada Reference Mannal,
LNCS 4348, Springer, Heidelberg, 2006.

[3] ISO/MEC JTC 1/SC 22 N 4522, ISOAEC TR 24772,
Information Technology — Programming Languages
— Guidance to Avoiding Vulnerabiliies in
Programming Languages through Language Selection
and Use, 7 November 2009. ‘

[4] SPARK Language Definition; “SPARK95: The
SPADE Ada Kemel (Including RavenSPARK)”
~ Available at www.altran-praxis.com.

[5] NIST Special Publication 268, “Source Code Security
Analysis Tool Functional Specification Version 1.0,”
May 2007.

[6] Proceedings of the Software Vulnerabilities
Workshop of Ada-Europe 2009, in Ada User Journal,
Volume 30, Number 3, September 2009, pp. 174-192.

Volume 31, Number 4, December 2010

Ada User Journal

A. Burns, J. L. Tokar (Eds.)

Annex SPARK - Final Draft

SPARK:.Specific information for
vulnerabilities

SPARK.1 Identification of standards
and associated documentation

See Ada.1”, plus the references below. In the body of this
annex, the following documents are referenced using the
short abbreviation that introduces each document,
optionally followed by a specific section number. For
examplé “[SLRM 5.27" refers to section 5.2 of the SPARK
Language Definition.

[SLRM] SPARK Language Definition; “SPARKS3: The
SPADE Ada Kernel (Including RavenSPARK)” Latest
version always available from www.altran-praxis.com.

[SB] “High Integrity Software: The SPARK Approach to
Safety and Security.” John Barnes, Addison-Wesley, 2003.
ISBN 0-321-13616-0.

[IFA] “Information-Flow and Data-Flow Analysis of while-
Programs.” Bernard Carré and Jean-Francois Bergeretti,
ACM Transactions on Programming Languages and
Systems (TOPLAS) Vol. 7 No. 1, January 1985. pp 37-61.

[LSP] “A behavioral notion of subtyping.” Barbara Liskov
and Jeannette Wing. ACM Transactions on Programming
Languages and Systems (TOPLAS), Volume 16, Issue 6
{November 1994), pp. 1811 - 1841.

SPARK.2 Geheral terminology and
concepts

The SPARK language is a contractualized subset of Ada,
specifically designed for high-assurance systems. SPARK
is designed to be amenable to various forms of static
analysis that prevent or mitigate the vulnerabilities
described in this TR.

- This section introduces concepts and terminology which
are specific to SPARK and/or relate to the use of static
analysis tools. :

“Soundness
This concept relates to the absence of false-negative results
from a static analysis tool. A false negative is when a tool
is posed the question “Does this program exhibit

“vulnerability X?” but incorrectly responds “no.” Such a
tool is said to be unsound for vulnerability X. A sound tool
effectively finds all the vulnerabilities of a particular class,
whereas an unsound tool only finds some of them.

* Editor's note: The Ada Annex is published in the September 2010 issue
of the Ada User Journal (Vol. 31, n. 3).

279

The provision of soundness in static analysis is
problematic, mainly owing to the presence of unspecified
and undefined features in programming Janguages. Claims
of soundness made by tool vendors should be carefully
evaluated to verify that they are reasonable for a particular
language, compilers and target machines. Soundness claims
are always underpinned by assumptions (for example,
regarding the reliability of memory, the correctness of
compiled code and so on) that should also be validated by
users for their appropriateness.

Static analysis techniques can also be sound in theory —
where the mathematical model for the language semantics
and analysis techniques have been formally stated, proved,

- and reviewed — but unsound in practice owing to defects

in the implementation of analysis tools. Again, users should
seek evidence to support any soundness claim made by
language designers and tool vendors, A langnage which is
unsound in theory can never be sound in practice.

The sihg]e overriding design goal of SPARK is the
provision of a static analysis framework which is sound in
theory, and as sound in practice as is reasonably possible.

In the subsections below, we say that SPARK prevents a
vulnerability if supported by a form of static analysis which
is sound in theory. Otherwise, we say that SPARK
mitigates a particular vulnerability.

SPARK Processor

We define a “SPARK Processor” to be a tool that
implements the various forms of static analysis required by
the SPARK language definition. Without a SPARK
Processor, a program cannot reasonably be claimed to be
SPARK at all, much in the same way as a compiler checks
the static semantic rules of a standard programming
language.

In SPARK, certain forms of analysis are said to be
mandatory — they are required to be implemented and
programs must pass these checks to bz valid SPARK,
Examples of mandatory analyses are the enforcement of the
SPARK language subset, static semantic analysis (e.g.
enhanced type checking) and information flow analysis
[TFA].

“Some analyses are said to be optional - a user niay choose
- to enable these additional analyses at their discretion. The

most notable example of an optional analysis in SPARK is
the generation of verification conditions and their proof
using a theorem proving tool. Optional analyses may
provide greater depth of analysis, protection from
additional vulnerabilities, and so on, at the cost of greater
analysis time and effort.

Failure modes for static analysis

Unlike a language compiler, a user can always choose not
to, or might just forget to run a static analysis tool.
Therefore, there are two modes of failure that apply to all
vulnerabilities: ,

Ada User Journal

Volume 31, Number 4, December 2010

280 - Ada and the Software Vulnerabilities Project: the SPARK Annex

1. The user fails to apply the appropriate static

. analysis tool to their code.

2. The user fails to review or mis-interprets the
output of static analysis,

SPARK 3.BRS Obscure Language
Features [BRS]

SPARK mitigates this vulnerability.

SPARK.3.BRS.1 Terminology and
features '

As in Ada.3.BRS.1.

SPARK.3.BRS.2 Description of
vuinerability

As in Ada.3.BRS.2.

SPARK.3.BRS.3 Avoiding the
vulnerability or mitigating its effects

The design of the SPARK subset avoids many langnage
features that might be said to be “obscure” or “hard to
understand”, such as controlled types, unrestricted tasking,
anonymous access types and so on. :

SPARK goes further, though, in aiming for a completely
wnambiguous semantics, removing all erroneous and
implementation-dependent features from the language. This
means that a SPARK program should have a single
meaning to programmers, reviewers, maintainers and all
compilers.

SPARK also bans the aliasing, overloading, and
redeclaration of names, so that one entity only ever has one
name.and one name can denote at most one entity, further
reducing the risk of mis-understanding or mis-interpretation
of a program by a person, compiler or other tools.

- SPARK.3.BRS.4 Implications for
standardization

None.

SPARK.3.BRS.5 Bibliography

None.

SPARK.3.BQF Unspecified
Behaviour [BQF]

SPARK prevents this vulnerability.

SPARK.3.BQF.1 Terminology and
features

As in Ada.3.BQF.1.

SPARK.3.BQF.2 Description of
vulnerability

Asin Ada.3 BQF2.

SPARK.3.BQF.3 Avoiding the
vulnerability or mitigating its effects

SPARK is designed to-eliminate all unspecified language .

features and bounded errors, either by subsetting to make
the offending language feature illegal in SPARK, or by
ensuring that the fanguage has neutral semantics with
regard to an unspecified behaviour.

*Neutral semantics” means that the program has identical
meaning regardless of the choice made by a compiler for a
particular unspecified language featurs.

For example: '
* Unspecified behaviour as a result of parameter-
passing mechanism is avoided through subsetting
{no access types) and analysis to make sure that
formal and global parameters do not overlap and
create a potential for aliasing [SLRM 6.4].

* Dependence on evaluation order is prevented
through analysis so that all expressions in SPARK
.are free of side-effects and potential nm-time
errors. Therefore, any evaluation order is allowed
and the result of the evaluation is the same in all
cases [SLRM 6.1].

Bounded error as a result of uninitialized variables
is prevented by application of static information
flow analysis [IFA].

SPARK.3.BQF.4 Implications for
standardization

None.

SPARK 3.BQF.5 Blbllography

None.

SPARK.3.EWF Undefined
Behaviour [EWF]

SPARK prevents this vulnerability.

SPARK.3. EWF 1 Termmology and
features

Asin Ada.3. EWF.1.

SPARK.3.EWF.2 Description of
vuinerability

Asin Ada.3 EWF.2.

Volume 31, Number 4, December 2010

Ada User Journal

A. Burns, J. L. Tokar (Eds.)

SPARK.3.EWF.3 Avoiding the
vulnerability or mitigating its effects

SPARK prevents all erroneous behaviour, either through
subsetting or static analysis [SB.3].

SPARK.3.EWF.4 Implications for
standardization

None,

SPARK.3.EWF.5 Bibliography 7

None.

SPARK.3.FAB Implementation-
Defined Behaviour [FAB]

SPARK mitigates this vulnerability.

SPARK.3.FAB.1 Terminology and features
 Asin Ada.3 FAB.I. '

SPARK.3.FAB.2 Description of
‘vulnerability

Asin Ada.3.FAB.2.

SPARK.3.FAB.3 Avoiding the vulnerability
or mitigating its effects

SPARK allows a number of impleﬁlentation—deﬁned
features as in Ada. These include:

® The range of predefined integer types.
The range and precision of predefined floating-
point types. .

Therange of System.Any_Priority and its
subtypes.

» The value of constants such as System.Max_Int,
System.Min_Iut and so on, e

* The selection of T"Base for a user-defined integer
or floating-point type T. - :

* The rounding mode of floating-point types.

In the first four cases, static analysis tools can be
configured to “know™ the appropriate values [SB 9.6]. Care
must be taken to ensure that these values are correct for the
intended implementation, In the fifth case, SPARK defines
a contract to indicate the choice of base-type, which can be
checked by a pragma Assert. In the final case, additional
static analysis of numerical precision must be performeéd by
‘the user to ensure the correctness of floating-point
algorithms,

SPARK.3.FAB.4 Implications for
standardization

None.

281

SPARK.3.FAB.5 Bibliography

None.

SPARK.3.MEM Deprecated
Language Features [MEM]

SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3 MEM.

SPARK.3.NMP Pre-Processor
Directives [NMP]

SPARK is identical to Ada with respect to this vulnerability
and its mitigation, See Ada.3 NMP.

SPARK.3.NAI Choice of Clear
Names [NAI] :

SPARK is identical to Ada with respect to this vulnerability

and its mitigation. See Ada.3.NAL

SPARK.3.AJN Choice of Filenames

~and other External Identifiers [AJN]

SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.AJN.

SPARK.3.XYR Unused Variable
[XYR]

SPARK mitigates this vulnerability. -

SPARK.3.XYR.1 Terminology and
features

Asin Ada3 XYR.1.

SPARK.3.XYR.2 Description of
vulnerability

Asin Ada.3.XYR.2.

SPARK.3.XYR.3 Avoiding the vuinerability
or mitigating its effects

As in Ada.3.XYR 3. Also, SPARK is designed to permit
sound static analysis of the following cases [IFAT:

* Variables which are declared but not used at all.
® Variables which are assigned to, but the resulting
value is not used in any way that affects an output
of the enclosing subprogram. This is called an
* “ineffective assignment” in SPARK.

- SPARK.3.XYR.4 Implications for

standardization

None.

Ada User Journal

Volume 31, Number 4, Daecember 2010

282 Ada and the Software Vulnerabilities Project: the SPARK Annex

SPARK.3.XYR.5 Bibliography

None.

'SPARK.3.YOW Identifier Name
Reuse [YOW]

SPARK prevents this vulnerability.

SPARK.3.YOW.1 Terminology and
features

Asin Ada.3.YOW.1.

SPARK.3.YOW.2 Description of
vulnerability

As in Ada3.YOW.2.

SPARK.3.YOW.3 Avoiding the
vulnerability or mitigating its effects

This vulnerability is prevented through language rules
enforced by static analysis. SPARK does not permit names

in local scopes to redeclare and hide names that are already

visible in outer scopes [SLRM 6.1].

SPARK.3.YOW.4 Implications for
standardization

None.

SPARK.3.YOW.5 Bibliography

None.

SPARK.3.BKL Namespace Issues
[BJL]

SPARK is identical to Ada with respect to this Vulnerabmty
and its mitigation. See Ada.3.BJIL.

SPARK:3.IHN Type System [[HN]
SPARK mitigates this vulnerability.

- SPARK.3.IHNA Terminbldgy and features

SPARK’s type system is a simplification of that of Ada.
Both Explicit and Implicit conversions are permitted in
SPARK, as is instantiation and use of

Unchecked Conversien [SB 1.3].

A design goal of SPARK is the provision of static type
safety, meaning that programs can be shown to be free from
all run-time type failures using entirely static analysis. If
this optional analysis is achieved, a SPARK program
should never raise an exception at run-time.

SPARK.3.IHN.2 Description of
vulnerability

As in Ada.3.JHN.2 for Unchecked_Conversion.

SPARK.3.IHN.3 Avoiding the vulnerability
or mitigating its effects

Vulnerabilities relating to value conversions, exceptions,
and assignments are mitigated by static analysis.
Vaulnerabilities relating to the use of
Unchecked_Conversion are as in Ada.

SPARK.3.IHN.4 Impllcatlons for
standardization

None.

SPARK.3.IHN.5 Bibliography

None.

SPARK.3.STR Bit Representation

[STR]
- SPARK mitigates this vulnerability.

SPARK.3.STR.1 Terminology and features
Asin Ada.3.STR.1.

SPARK.3.STR.2 Description of
vulnerability

SPARK is designed to offer a semantics which is
independent of the underlying representation chosen by a
compiler for a particular target machine. Representation
clauses are permitted, but these do not affect the semantics
as seen by a static analysis tool [SB 1.3].

SPARK.3.STR.3 Avoiding the vulnerablllty
or mitigating its effects
As in Ada 3.STR 4.

SPARK.3.STR.4 Implications for
standardization
Noze.

SPARK.3.STR.5_ Bibliography

None.

SPARK.3.PLF Floating-point
Arithmetic [PLF]

SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.PLF.

SPARK.3.CCB Enumerator Issues

[CCB]

" SPARK is identical to Ada with respect to this vuinerablhty

and its mitigation. See Ada.3.CCB.

Volume 31, Number 4, December 2010

Ada User Journal

A. Burns, J. L. Tokar (Eds.)

SPARK.3.FLC Numeric Conversion
Errors [FLC]

- SPARK prevents this vulnerability.

SPARK.3.FLC.1 Terminology and features
As in Ada.3.FLC.1,

SPARK.3.FLC.2 Description of
vulnerability

Asin Ada3FLC2.

SPARK.3.FLC.3 Avoiding the vuinerability
or mitigating its effects

SPARK is designed to be amenable to static verification of
the absence of predefined exceptions, and in particular ail
cases covered by this vulnerability [SB 11]. All numeric
conversions (both explicit and implicit) give rise to a
verification condition that must be discharged, typically
using an automated theorem-prover.

SPARK.3.FLC.4 lmpl[cat!ons for.
standardization

None. -

SPARK.3.FLC.5 Bibliography

None.

-~ SPARK.3.CJM String Termination
[CIM]

SPARK is identical to Ada with respect to this vuinerability
and its mitigation. See Ada.3.CIM.

SPARK.3.XYX Boundary Begmnlng
Violation [XYX]

SPARK prevents this vulnerability.

SPARK.3.XYX.1 Terminology and features
Asin Ada.3.XYX 1.

SPARK.3.XYX.2 Description of
vulnerability

Asin Ada3.XYX2.

SPARK.3.XYX.3 Avoiding the vulnerability
or mitigating its effects
SPARK is designed to permit static analysis for all such

boundary violations, through techniques such as theorem
proving or abstract interpretation [SB 11].

SPARK programs that have been subject to this level of
analysis can be compiled with run-time checks suppressed,

283

supported by a body of evidence that such checks could
never fail, and thus removing the possibility of erroneous
execution.

SPARK.3.XYX.4 Implications for
standardiza_tion

None,

SPARK.3.XYX.5 Bibliography

Nonhe.

SPARK.3.XYZ Unchecked Array
Indexing [XYZ]

SPARK: prevents this vulnerability.

SPARK.3.XYZ.1 Téerminology and features
Asin Ada3 XYZ.1.

SPARK.3.XYZ.2 Description of
vulnerability

Asin Ada.3 XYZ.2.

SPARK.3.XYZ.3 Avoiding the vulnerability
or mitigating its effects

As per SPARK.3.XYX.3 — this vulnerability is eliminated

in SPARK by static analysis using the same techniques.

SPARK.3.XYZ.4 Implications for
standardization

None.

SPARK 3.XYZ.5 Blbllography

Nomne.

SPARK.3.XYW Unchecked Array
Copying [XYW]
SPARK prevents this vulnerability.

SPARK.3.XYW.1 Termmology and
features '

Asin Ada3 XYW.1.

SPARK.3.XYW.2 Description of
vulnerability

Asin Ada.3.XYW.2.

SPARK.3.XYW.3 Avoiding the
vulnerability or mitigating its effects

© Array assignments in SPARK are only permitted between

objects that have statically matching bounds, so there is no

Ada User Journal

Volume 31, Number 4, December 2010

284 Ada and the Software Vulnerabilities Project: the SPARK Annex

possibility of an exception being raised [SB 3.5, SLRM
4.1.2]. Ada’s “slicing” and “sliding™ of arrays is not
permitted in SPARK, so this vulnerability cannot occur,

SPARK.3.XYW.4 Implications for
standardization

None.

SPARK.3.XYW.5 Bibliography

None.

. SPARK.3.XZB Buffer Overflow
[XZB]

SPARK prevents this vulnerability.

SPARK.3.XZB.1 Terminology and features
Asin Ada.3.HCF.1. ’ :

SPARK.3.XZB.2 Descriptiori of
vulnerability

Asin Ada.3.X7B.2.

SPARK.3.XZB.3 Avoiding the vulnerability
or mitigating its effects

As per SPARK.3.XYX 3 — this vulnerability is eliminated
in SPARK by static analysis uding the same techniques.

SPARK.3.XZB.4 Implications for
standardization

None.

SPARK.3.XZB.5 Bibliography

None.

SPARK.3.HCF Pointer Casting and
Pointer Type Changes [HCF]

- SPARK prevents this vulnerability.

SPARK.3.HCF.1 Terminology and features

Asin Ada.3 HCF.1.

'SPARK.3.HCF.2 Description of
vulnerability

Asin Ada 3. HCF.2.

SPARK.3.HCF.3 Avoiding the vulnerability
or mitigating its effects
This vulnerability cannot occur in SPARK, since the

SPARK subset forbids the declaration or use of access
(pointer) types [SB 1.3, SLRM 3.101.

SPARK.3.HCF.4 Implications for
standardization

None.

SPARK.3.HCF.5 Bibliography

None.

SPARK.3.RVG Pointer Arithmetic
[RVG]
SPARK prevents this vulnerability.

SPARK.3.RVG.1 Terminology and
features

Asin Ada.3.RVG.1.

SPARK.3.RVG.2 Description of
vulnerability

Asin Ada3.RVG.2.

SPARK.3.RVG.3 Avo'iding the
vulnerability or mitigating its effects

This vulnerability cannot occur in SPARK, since the
SPARK subset forbids the declaration or use of access
(pointer) types [SLRM 3.10].

SPARK.S.RVGA Implications-for
standardization '

None.

SPARK.3.RVG.5 Bibliography

None.

SPARK.3.XYH Null Pointer
Dereference [XYH]

SPARK prevents this valnerability.

SPARK.3.XYH.1 Terminology and
features

Asin Ada.3.XYH.L.

SPARK.3.XYH.2 Description of
vulnerability

" Asin Ada.3.XYH.2.

SPARK.3.XYH.3 Avoiding the vulnerability
or mitigating its effects
This vulnerability cannot occur in SPARK, since the

SPARK subset forbids the declaration or use of access
(pointer) types [SLRM 3.10].

Volume 31, Number 4, December 2010

Ada User Journal

A. Burns, J. L. Tokar {(Eds.)

SPARK.3.XYH.4 Implications for
standardization '

None,

SPARK.3.XYH.5 Bibliography

None.

SPARK.3.XYK Dangling Reference
to Heap [XYK]

"‘SPARK prevents this vulnerability.

SPARK.3.XYK.1 Terminology and
features

‘As in Ada.3.XYE.1.

SPARK.3.XYK.2 Description of
vulnerability

As in Ada.3.XYK.2.

SPARK.3.XYK.3 Avoiding the vulnerability
or mitigating its effects

This vulnerability cannot occur in SPARK, since the
SPARK subset forbids the declaration or use of access
{pointer) types [SLRM 3.10].

SPARK.3.XYK.4 Implications for
standardization

None.

SPARK.3.XYK.5 Bibliography

None.

SPARK 3.SYM Templates and
Generics [SYM]

At the time of writing, SPARK does not permit the use of
generics units, so this volnerability is currently prevented.
In future, the SPARK language may be extended to permit
generic units, in which case section Ada. 3.8YM applies.

SPARK.3.RIP Inheritance [RIP]
SPARK mitigates this vulnerability.

SPARK.3.RIP.1 Terminology and features
As in Ada.3.RIP.1. '

SPARK.3.RIP.2 Description of
vulnerability

Asin Ada.3.RIP.1.

285

SPARK.3.RIP.3 Avoiding the vulnerability
or mitigating its effects

SPARK permits only a subset of Ada’s inheritance
facilities to be used. Multiple inheritance, class-wide
operations and dynamic dispatching are not permitted, so
alt vulnerabilities relating to these language features do not
applyto SPARK [SLRM 3.8].

SPARK is also designed to be amenable to static

verification of the Liskov Substitution Principle [L.SP].

SPARK.3.RIP.4 Implications for
standardization

None.

SPARK.3.RIP.5 Bibliography

None.

SPARK.3.LAV Initialization of

Variables [LAV]
SPARK prevents this vulnerability?

SPARK.3.LAV.1 Terminology and features
Asin Ada3.LAV.]. -

SPARK.3.LAV.2 Description of
vuinerability

Adain Ada.3.LAV.2,

SPARK.3.LAV.3 Avoiding the vulnerability
or mitigating its effects 7

This vulnerability is entirely prevented by use of static
information flow analysis [TFA].

SPARK.3.LAV.4 Impllcatlons for
standardization

None.

SPARK.3.LAV.5 Blbllography

None.

SPARK.3.XYY Wrap-around Error
[XYY]

See Ada.3 XYY In addition, SPARK mitigates this
vulnerability through static analysis to show that a signed
integer expression can never overflow at run-time [SB 11].

SPARK.3.XZI Sign Extension Error
[XZI] - .

SPARK is identical to Ada with respeet to this vulnerability

and its mitigation. See Ada.3.XZL

Ada User Journal

Volume 31, Number 4, December 2010

286 Ada and the Software Vulnerabilities Project: the SPARK Annex

SPARK.3.JCW Operator
Precedence/Order of Evaluation
[JCW]

SPARK is identical to Ada with respect to this vulnérability
and its mitigation, See Ada.3.JCW.

SPARK.3.SAM Side-effect and
Order of Evaluation [SAM]

SPARK prevents this vulnerability,

SPARK.3.SAM.1 Terminology and
features

As in Ada.3.SAM.1.

SPARK.3.SAM.2 Description of
vulnerability

As in Ada.3.SAM.2.

SPARK.3.SAM.3 Avoiding the
vulnerability or mitigating its effects

SPARK does not permit functions to have side-effects, so
all expressions are side-effect free. Static analysis of Tun-
time errors also ensures that expressions evaluate without
raising exceptions. Therefore, expressions are neutral to
evaluation order and this vulnerability does not occur in
SPARK [SLRM 6.1]. '

SPARK.3.SAM.4 implications for
standardization

None.

SPARK.3.SAM.5 Bibliography

None.

SPARK.3.KOA Likely Incorrect
Expression [KOA]

SPARK is identical to Ada with respect to this vulnerability

and its mitigation (see Ada.3. KQA) although many cases of

“likely incorrect” expressions in Ada are forbidden in
SPARK.

SPARK.3.XYQ Dead and
- Deactivated Code [XYQ]

SPARK mitigates this vulnerability.

SPARK.3._XYQ.1 Terminology and
features

Agin Ada3.XYQ.1.

SPARK.3.XYQ.2 Description of
vulnerability

As in Ada.3.XY Q2

SPARK.3.XYQ.3 Avoiding the
vulnerability or mitigating its effects
In addition to the advice of Ada3.XYQ.3, SPARK is

amenable to optional static analysis of dead paths. A dead
path cannot be executed in that the combination of

‘conditions for its execution are logically equivalent to false.

Such cases can be statically detected by theorem proving in
SPARK.

SPARK.3 XYQ 4 Impl:catlons for
standardization

None.

SPARK.3.XYQ.5 Bibliography

" None.

- SPARK.3.CLL Switch Statements

and Static Analysis [CLL]

As in Ada.3.CLL, this vulnerability is prevented by

SPARK. The vulnerability relating to.an uninitialized)
variable and the *“when others” clause in a case statement is
also prevented — see SPARK 3. LAV.

SPARK.3.EOJ Demarcation of
Control Flow [EQJ]

SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.EOL.

SPARK.3.TEX Loop Control
Variables [TEX]

SPARK prevents this vulnerability in the same way as Ada.
See Ada.3.TEX.

SPARK.3.XZH Off-by-one Error
[XZH]

SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.XZH. Additionally, any off-
by-one error that gives rise to the potential for a buffer-
overflow, range violation, or any other construct that could.
give rise to a predefined exception, will be detected by
static analysis in SPARK [SB 11].

SPARK.3.EWD Structured
Programming [EWD]

SPARK mitigates this vulnersbility.

Volume 31, Number 4, December 2010

Ada User Journal

A. Burns, J. L. Tokar (Eds.)

SPARK.3.EWD.1 Terminology and
features

Asin Ada.3.EWD.1

~ SPARK.3.EWD.2 Description of
vulnerability

Asin Ada.3.EWD.2

SPARK.3.EWD.3 Avoiding the
vulnerability or mitigating its effects

Several of the vulnerabilities in this category that affect
Ada are entirely eliminated by SPARK. In particular: the

use of the goto statement is prohibited in SPARK [SLRM _

5.8], loop exit statements only apply to the most closely
eenclosing loop (so “multi-level loop exits” are not
permitted) [SLRM 5.7}, and ail subprograms have a single
entry and a single exit-point [SLRM 6]. Finally, functions
in SPARK must have exactly one return statement which
must the final statement in the function body [SLRM 6].

SPARK.3.EWD.4 Implications for
standardization

None.

SPARK.3.EWD.5 Blbllography

None.

SPARK.3.CSJ Passing Parameters
. and Return Values [CSJ]

SPARXK mitigates this vulnerability. -

SPARK.3.CSJ.1 Termmology and features
Asin Ada.CSJ.1.

SPARK.3.CSJ.2 Description of
vulnerability

As in Ada.CSI3.

SPARK.3.CSJ.3 Avoiding the vulnerability
or mitigating its effects

SPARK goes further than Ada with regard to this
vulnerability. Specifically:

'» SPARK forbids all aliasing of parameters and
names [SLRM 6].

¢ SPARK is designed to offer consistent semantics
regardless of the parameter passing mechanism
employed by a particular compiler. Thus this
implementation-dependent behaviour of Ada is
eliminated from SPARK.

Both of these properties can be checked by static analysis.

287

SPARK.3.CSJ.4 Implications for
standardization

None.

SPARK.3.CSJ.5 Bibliography

None.

SPARK.3.DCM Dangling References
to Stack Frames [DCM]

SPARK prevents this valnerability.

SPARK.3.DCM.1 Terminology and
features

Asin Ada.3 DCM.L.

SPARK.3.DCM.2 Descnptlon of
vulnerability '

As in Ada.3.DCM.2.

SPARK.3.DCM.3 Avoiding the
vulnerability or mitigating its effects

: SPARK forbids the use of the ‘Address attribute to read the

address of an object [SLRM 4.1]. The ‘Access attribute and
all access types are also forbidden, so this vulnerability
cannot occur. _

SPARK.3.DCM.4 Implications for
standardization

None.

SPARK.3.DCM.5 Bibliography

None.

'SPARK.3.0TR Subprogram

Signature Mismatch [OTR]
SPARK mitigates this vulnerability.

SPARK.3.0TR.1 Terminology and
features

See Ada.3.0TR.1.

SPARK.3.0TR.2 Description of
vulnerability

See Ada.3.0TR.2.

SPARK.3.0TR.3 Avoiding the
vulnerability or mitigating its effects
Default values for subprogram are not permitted in SPARK

[SLRM 6], so this case cannot occur. SPARK does permit
calling modules written in other languages 80, as in

_Ada User Journal

Volume 31, Number 4, December 2010

288 . Ada and the Software Vulnerabilities Project: the SPARK Annex

Ada3.0TR.3, additional steps are required to verify the
number and type-correctness of such parameters,

SPARK also allows a subprogram body to be written in
full-blown Ada (not SPARK). In this case, the subprogram
body is said to be “hidden”, and no static analysis is
performed by a SPARK Processor. For such hidden bodies,
some alternative means of verification must be employed,
and the advice of Annex Ada should be applied.

SPARK.3.0TR.4 Implications for
standardization

None.

' SPARK.3.0TR.5 Bibliography

None.

SPARK.3.GDL Recursion [GDL]

SPARK does not permit recursion, so this vulnerability is
prevented [SLRM 6].

SPARK.3.NZN Returning Error
Status [NZN]

~ SPARK is identical to Ada with respect to this vulnerability
and its mitigation. See Ada.3.NZN.

SPARK.3.REU Termination Strategy-

[REU]
SPARK mitigates this vulnerability,

SPARK.3.REU.1 Terminology and
features

- Asin Ada.3.REU.1

SPARK.3.REU.2 Description of
vulnerability -

Asin Ada 3 REU.2,

SPARK.3.REU.3 Avoiding the _
vulnerability or mitigating its effects

SPARK permits a limited subset of Ada’s tasking facilities
known as the “Ravenscar Profile” [SLRM 9]. There is no
nesting of tasks in SPARK, and all tasks are required to
have a top-level loop which has no exit statements, so this
vulnerability does not apply in SPARK.

SPARK is also amenable to static analysis for the absence
~of predefined exceptions [SB 11], thus mitigating the case
where a task terminates prematurely (and silently) owing to
an unhandled predefined exception.

SPARK.3.REU.4 Implications for
standardization

None.

SPARK.3.REU.5 Bibliography

None.

SPARK.3.LRM Extra Intrinsics
[LRM] -

SPARK prevents this vulnerablhty i the same way as Ada
See Ada.3.LRM.

SPARK.3.AMV Type-breaking
Reinterpretation of Data [AMV]
SPARK mitigates this vulnerability.

SPARK.3.AMV.1 Terminology and
features

Asin Ada3AMV 1.

SPARK.3.AMV.2 Descrlption of
vulnerability

Asin Ada.3.AMV .2,

SPARK.3.AMV.3 Avoiding the
vulnerability or mitigating its effects

SPARK. permits the instantiation and use of
Unchecked Conversion as in Ada. The result of a call to

“Unchecked Conversion is not assumed to be valid, so static

verification tools can then insist on re-validation of the
result before further analysis can succeed [SB 11].

At the time of writing, SPARK does not permit - -

discriminated records, so vulnerabilities relating to
discriminated records and unchecked unions are prevented.

SPARK.3.AMV.4 Implications for
standardization -

Norne.

SPARK.3.AMV.5 Blbllography

None,

SPARK.3.XYL Memory Leak [XYL]
SPARK prevents ﬂ;u's vulnerability.

SPARK.3.XYL.1 Terminology and features
Asin Ada.3.XYL.1L.

Volume 31, Number 4, December 2010

Ada User Journai

A. Burns, J. L. Tokar (Eds.)

SPARK.3.XYL.2 Description of
vulnerability

As in Ada.3.XYL.2.

SPARK.3.XYL.3 Avoiding the vulnerability
or mitigating its effects

.SPARK does not permit the use of access types, storage
pools, or allocators, so this vulnerability cannot occur
(SLRM 3]. In SPARK, all cbjects have a fixed size in
memory, so the language is also amenable to static analysis
of worst-case mémory usage.

SPARK.3.XYL.4 Imphcatlons for
standardization

None.

SPARK.3.XYL.5 Bibliography

None,

SPARK.3.TRJ Argument Passing to
Library Functions [TRJ]

SPARK mltlgates this vulnerability.

SPARK.3.TRJ.1 Terminology and features
See Ada.3.TRJ.1.

SPARK.3.TRJ.2 Descnptlon of
vulnerabillty

See Ada.3.TRJ.2.

289

SPARK.3.TRJ.3 Avoiding the vulnerablllty

‘or mitigating its effects

SPARK includes all of the mitigations of Ada with respect
to this vulnerability, but goes further, allowing

preconditions to be checked statically by a theorem-prover.
The language in which such preconditions are expressed is
also substantially more expressive than Ada’s type system.

SPARK.3.TRJ.4 Implications for
standardization

None.

SPARK.3.TRJ.5 Bibliography

None.

SPARK.3.NYY Dynamically-linked
Code and Self-modifying Code
INYY] |

SPARK prevents this vulnerability in the same way as Ada.
Sec Ada.3.NYY. -

SPARK.3.NSQ Library Signature
[NSQ]

SPARK prevents this vulnerability in the same way as Ada.
See Ada.3.NSQ.

SPARK.3.HJW Unanticipated
Exceptions from Library Routines
[HJW]

SPARK prevents this vulnerability in the same way as Ada.
See Ada.3.HIW. SPARK does permit the use of exception
handlers, so these may be used to catch unexpected
exceptions from library routines.

Ada User Journal

Volume 31, Number 4, December 2010

