
C vs Ada: Arguing Performance Religion
By David Syiek

Tartan, Inc
300 Oxford Drive

Monroevi/le, PA 16146-2346
syiek@ta rtan. corn

(Reprinted from On Targeti Tartan's Compilation of
Real-Time Embedded Systems News.}

Recently, I attended the Embedded Systems Conference
East. Between dames, I spent time conversing with numerous
other software engineers. At some point it would come out
that I help buildAdalCIC++ compilers for embedded targets.
The reaction to "Ada" was always interesting. Most attendees
did not know much about the language, except that it was
rumored to be "big and slow" and that C was felt to be much
better for embedded systems programming.

I usually don' t like to argue religion, but this common
myth about Ada being "big and slow" is just that - - a myth,
possibly from early experience when compilers were not as
efficient. In fact, I have found that if the language toolsets are
of equal quality and maturity, benchmarks that are carefully
written to be as identical as the two languages allow execute
at pretty nearly the same speed. Ada versions even have a
slight edge over their C counterparts!

Don ' t believe me? Read on...

The most recent of my manyAda vs. C run-offexperiences
happened this past January. I was asked to build an Ada vs.
C performance case for use in an educational Ada seminar. I
was to run the well-known "Hennessy" benchmarks through
the Tartan Ada C3x compiler and compare the results to the
ones recendy computed for comparing Tartan C against
Texas Instruments C in our sales literature.

The first problem was to find a version of the Hennessy
benchmarks that exactly matched the C code. There are Ada
versions of these benchmarks contained in the PIWG (Per-
formance Issues Working Group) tests. However, on close
examination, I found that these versions did not closely
match their C counterparts. In the end I was forced to make
my own line-for-line translation.

After a little fun veri@ing the correctness of the translation
and even more fun duplicating the exact compiler options,
linking strategy and hardware conditions used for the C tests,
I managed to produce the table of ratios shown to the right.

In the table, Tartan C execution times are normalized to
1.0. Thus, slower times are greater than 1.0 and faster ones are
smaller than 1.0. The geometric means of the ratios shows
that Tartan Ada (v5.1) is about 9% faster than Tartan C
(v2.0) which is in turn about 28% faster than T I C (v4.5).

Over this set of benchmarks and with nearly identical
toolsers, Ada performance was slighdy better than that o f C
code. The comparison between Tartan C and T I C helps
remove concerns that the C-specific portion of the Tartan C
toolset is somehow of lesser quality than the Ada-specific
portion.

I have performed many Ada vs. C performance studies
over the last five years using customer application code. I
assure you that these figures are representative.

Ada does seem to have a slight edge over C. I have done
some research as to the reasons. Here are some of my
findings.

Ada Advantage #I: Cress-Compilation Unit
Optimizations

It would be foolish to build a large application as a
monolith. Both the Ada and C environments provide
decomposition at a number of levels. For example, both
languages support the notion of separate compilation - - the
ability to break the application into smaller units such that
each unit may be compiled separately and combined later
with a linker into the final application.

ACM Ada Letters, Nov~Dec 1995 Page 67 Volume XV, Number 6

http://crossmark.crossref.org/dialog/?doi=10.1145%2F216578.216583&domain=pdf&date_stamp=1995-12-01

However, there is a very key difference between C and Ada
separate compilation. In C, the compilation system never
imposes a compilation ordering. A consequence ofthis is that
information cannot be passed from earlier compilations to
later ones without the risk of creating art inconsistent system.
AnAda compilation system, on the other hand, is requiredto
enforce certain dependencies between compilation units and
thus mustcontrol compilation order. Since the compilation
order is under tool control, information can be saved from
earlier compilations for use in later ones without fear of
linking an inconsistent system.

How does Tartan Ada tree this to its advantage? Here are
four kinds, ofoptimizations done by the Ada compiler using
cross-compilation information:

1. Side Effect Analysis Across
Compi lat ion Units

l facompilat ion unit exports a rain function thar returns
the lesser of the two arguments, that function likely does not
have side effects. However, without proof a compiler must
assume that it does. This tends to block optimizations. For
example, globally visible variables may not be kept in regis ters
across such a call. InAda, if the rain routine is compiled
first, the compiler can determine that it does not alter any
global variables and save that information for use by all callers
of the m£n routine. With C, this information is lost. The
C user may achieve the effect of Ada by defining ra±n as a
macro. However, macros are prone to problems when
arguments have side effects, e.g., rain (p++, c/++). Another
solution is to include a private ia in with every compilation
unit. But this wastes space. A final option is to implement
some of the missed oprimizations by hand around the call
site. However, this introduces assumptions about the side
effects of the called routine that may not hold if the routine
changes in the future.

2. Automat ic Inlining Across Compilat ion
Units

In both Ada and C, it is possible to create compilation
units containing libraries of small utility routines. While this
is a wonderful organizational abstraction, it does have the
disadvantage that for each of the functions, call overheads are
incurred that can exceed the cost of the functions themselves!
With Ada it is possible to keep the abstraction without losing
the efficiency. The Ada compiler does this automatically by
optionally expanding any routine at the call site instead of
actually making the call. The Ada compilation system is
allowed to do this expansion because it controls compilation
order and knows that the code for the routine is consistent
with the inlined version. Wi th C, the user can get similar
effects to the Ada cross-compilation through macros or
through creation of private copies of routines, but as noted

above, both of these methods have disadvantages and require
user action.

3. Resource Usage Analysis Across
Compilat ion Units

Across call interfaces, resources are typically divided into
two classes: those preserved by the caUerand those preserved
by the callee. To avoid save/restore operations, compilers
typically avoid all caller-preserved resources around call sites.
This is suboptimal if the routine being called only uses a
subset of these resources. Furthermore, when the compiler
does use any caller-preserved resources, it is dearly a waste to
save/restore them around a call if they are not used by the
called routine. Tartan's Ada and C compilers avoid these
inefficiencies by tracking routine resource usage. However,
with the lack of cross-compilation information, C is unable
to perform this optimization for calls between compilation
units.

4. Optimal Call Site Selection Across
Compilat ion Units

In the Tartan C3x and C40 products, there are two
possible entries to every routine: onewhere the return address
is expected to be on the stack, and the other where it is
expected to be in a particular register. Either entry point may
be used, but the determination of which is faster is a function
of the particular routine and the conditions at the call site.
Both Tartan's Ada and C compilers do this analysis when the
routine being called was compiled previously within the
current compilation unit, but only the Ada compiler can do
this optimization properly when the routine being called is in
another compilation unit.

Ada Advantage #2: C Does Not Have a True
Array Type Ada Does

With C, the array declaration is actually a request for
memory allocation. No semantics are attached ro the array
object other than the base address of the block of memory
allocated. Specifically, the length oft.he array is not automati-
cally carried by the object either at compile-time or at run-
time. With Ada, an array object carries complete length (and
other) information. When the compiler is informed about
the shape of an array, it may optimize more code. For
example, on machines with exposed pipelines or long memory
read delays, it may be beneficial for the compiler to rearrange
the code:

A CM Ada Letters, Nov/Dec 1995 Page 68 Volume XV. Number 6

tO beoDITle

To do this, the compiler must know that Table (10) is
a readable location in memory even when b is not greater than
0. I f T a b l e is declared outside of this routine and passed
as a parameter, then all knowledge about its size is lost m the
C compiler and the optimization is blocked. With Ada this is
not true. C programmers may use conventions or layers of
abstraction to carry size information with memory allocations
to mimic a [rue array" type, but this will nor not convey the
information to the compiler and these optimizarions will
remain lost.

Aria Advantage #3: C Pointer Usage Reduces
Compile- Time Information

Pointers are a great strength of C. However, pointer usage
often reduces compile-rime information and this in turn
reduces optimization. For example, in the C code:

it may be hard or impossible for the compiler t o determine
that the pointers up, bp, and ¢p are all pointing at non-
intersecting memory. Without this information, the C
compiler may be unable to perform vectorizing optimizations
on the loop. Some C compilers do provide users with the
ability to make assertions about pointer usage ro unblock
these optimizations. The burden of proof of final code
correctness is (as always) on the user.

Note that the Ada equivalent of the above C loop:

allows the compiler to easily determine memory intersection
since the objects are named directly.

Ado Advantage #4: Free Form C Loops Are
Hard to Analyze

Ada f o r loops have clean compiler semantics; the
iteration variable is automatically dechrcd, is alive unly in the
loop, and may not be altered by code in the loop body. The
iteration count is well defined. It is generally" a simple task to
map Ado loops to hardware-supported looping constructs.

The C f o r Loop is not so well behaved. Iteration
variables are user declared at any visible scope and may be
alive on entry and exi[of the loop. They may be altered from
within the loop. The iteration count is not easy to compute
given the general purpose mechanism for defining initial and
continuation conditions. It takes a great deal o f work for a
compiler to determine that conditions are right to map aloop
onto certain hardware-supported looping constructs. C
users may increase the odds of success by adhering to coding
standards or by hand-tuning important loops until compiler
cooperation is achieved.

Conclusions
I think we can conclude that:

1. When written and compiled similarly, most Ada and C
programs run equally efficiently.

2. The quality of the compiled code is determined mostly
by the quality of the compiler and not of the language.

3. There are some cases where Ada code has an advantage.

4. In C the burden of optimization is often in the hands
of the programmer whereas in Ado, it is automated.

It should come as no surprise that Ado provides optimi-
zation opportunities that C does not. and that it takes the
burden of these optimizations off the back of the program-
mer. After all, the language was designed from the beginning
to permit high-level programming of real-time embedded
systems. The differences are not enormous, but can be
significant for applications requiring the most efficient code
possible.

About the Author
Dave is a ~aduate of Come~~ Universi~ and holds a M.S.

in Computer Engineeringj~om Carnegie Mellon University.
He is the senior engineer involved in Tartan's code generation
technology, the primary author and maintainer of Tartan's
numerical algorithms, and the primary author of some
Tartan documentation. Hit column, Dave's Comer, ix a
regular fiature of Tartan's O n Target newsletter.

ACM Ada Letters. Nov/Dec 1995 Page 69 Volume XV. Number 6

