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Recently, I attended the Embedded Systems Conference 
East. Between dames, I spent time conversing with numerous 
other software engineers. At some point it would come out 
that I help buildAdalCIC++ compilers for embedded targets. 
The reaction to "Ada" was always interesting. Most attendees 
did not know much about the language, except that it was 
rumored to be "big and slow" and that C was felt to be much 
better for embedded systems programming. 

I usually don' t  like to argue religion, but this common 
myth about Ada being "big and slow" is just that - -  a myth, 
possibly from early experience when compilers were not as 
efficient. In fact, I have found that if the language toolsets are 
of  equal quality and maturity, benchmarks that are carefully 
written to be as identical as the two languages allow execute 
at pretty nearly the same speed. Ada versions even have a 
slight edge over their C counterparts! 

Don ' t  believe me? Read on... 

The most recent of  my manyAda vs. C run-offexperiences 
happened this past January. I was asked to build an Ada vs. 
C performance case for use in an educational Ada seminar. I 
was to run the well-known "Hennessy" benchmarks through 
the Tartan Ada C3x compiler and compare the results to the 
ones recendy computed for comparing Tartan C against 
Texas Instruments C in our sales literature. 

The first problem was to find a version of  the Hennessy 
benchmarks that exactly matched the C code. There are Ada 
versions of  these benchmarks contained in the PIWG (Per- 
formance Issues Working Group) tests. However, on close 
examination, I found that these versions did not closely 
match their C counterparts. In the end I was forced to make 
my own line-for-line translation. 

After a little fun veri@ing the correctness of  the translation 
and even more fun duplicating the exact compiler options, 
linking strategy and hardware conditions used for the C tests, 
I managed to produce the table of  ratios shown to the right. 

In the table, Tartan C execution times are normalized to 
1.0. Thus, slower times are greater than 1.0 and faster ones are 
smaller than 1.0. The geometric means of  the ratios shows 
that Tartan Ada (v5.1) is about 9% faster than Tartan C 
(v2.0) which is in turn about 28% faster than T I C  (v4.5). 

Over this set of  benchmarks and with nearly identical 
toolsers, Ada performance was slighdy better than that o f  C 
code. The comparison between Tartan C and T I C  helps 
remove concerns that the C-specific portion of  the Tartan C 
toolset is somehow of  lesser quality than the Ada-specific 
portion. 

I have performed many Ada vs. C performance studies 
over the last five years using customer application code. I 
assure you that these figures are representative. 

Ada does seem to have a slight edge over C. I have done 
some research as to the reasons. Here are some of  my 
findings. 

Ada Advantage #I: Cress-Compilation Unit 
Optimizations 

It would be foolish to build a large application as a 
monolith. Both the Ada and C environments provide 
decomposition at a number of  levels. For example, both 
languages support the notion of  separate compilation - -  the 
ability to break the application into smaller units such that 
each unit may be compiled separately and combined later 
with a linker into the final application. 
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However, there is a very key difference between C and Ada 
separate compilation. In C, the compilation system never 
imposes a compilation ordering. A consequence ofthis is that 
information cannot be passed from earlier compilations to 
later ones without  the risk of  creating art inconsistent system. 
AnAda  compilation system, on the other hand, is requiredto 
enforce certain dependencies between compilation units and 
thus mustcontrol compilation order. Since the compilation 
order is under tool control, information can be saved from 
earlier compilations for use in later ones without fear of  
linking an inconsistent system. 

How does Tartan Ada tree this to its advantage? Here are 
four kinds, ofoptimizations done by the Ada compiler using 
cross-compilation information: 

1. Side Effect Analysis Across 
Compi lat ion Units 

l facompilat ion unit exports a rain function thar returns 
the lesser of  the two arguments, that function likely does not 
have side effects. However, without proof a compiler must 
assume that it does. This tends to block optimizations. For 
example, globally visible variables may not be kept in regis ters 
across such a call. InAda,  if the rain routine is compiled 
first, the compiler can determine that it does not alter any 
global variables and save that information for use by all callers 
of  the m£n routine. With  C, this information is lost. The 
C user may achieve the effect of  Ada by defining ra±n as a 
macro. However, macros are prone to problems when 
arguments have side effects, e.g., rain ( p++,  c/++ ). Another 
solution is to include a private ia in  with every compilation 
unit. But this wastes space. A final option is to implement 
some of  the missed oprimizations by hand around the call 
site. However, this introduces assumptions about the side 
effects of  the called routine that may not hold if  the routine 
changes in the future. 

2. Automat ic  Inlining Across Compilat ion 
Units 

In both Ada and C, it is possible to create compilation 
units containing libraries of  small utility routines. While this 
is a wonderful organizational abstraction, it does have the 
disadvantage that for each of  the functions, call overheads are 
incurred that can exceed the cost of  the functions themselves! 
With  Ada it is possible to keep the abstraction without losing 
the efficiency. The Ada compiler does this automatically by 
optionally expanding any routine at the call site instead of  
actually making the call. The Ada compilation system is 
allowed to do this expansion because it controls compilation 
order and knows that the code for the routine is consistent 
with the inlined version. Wi th  C, the user can get similar 
effects to the Ada cross-compilation through macros or 
through creation of  private copies of  routines, but as noted 

above, both of  these methods have disadvantages and require 
user action. 

3. Resource Usage Analysis Across 
Compilat ion Units 

Across call interfaces, resources are typically divided into 
two classes: those preserved by the caUerand those preserved 
by the callee. To avoid save/restore operations, compilers 
typically avoid all caller-preserved resources around call sites. 
This is suboptimal if  the routine being called only uses a 
subset of  these resources. Furthermore, when the compiler 
does use any caller-preserved resources, it is dearly a waste to 
save/restore them around a call if  they are not  used by the 
called routine. Tartan's Ada and C compilers avoid these 
inefficiencies by tracking routine resource usage. However, 
with the lack of  cross-compilation information, C is unable 
to perform this optimization for calls between compilation 
units. 

4. Optimal  Call Site Selection Across 
Compilat ion Units 

In the Tartan C3x and C40 products, there are two 
possible entries to every routine: onewhere the return address 
is expected to be on the stack, and the other where it is 
expected to be in a particular register. Either entry point may 
be used, but the determination of  which is faster is a function 
of  the particular routine and the conditions at the call site. 
Both Tartan's Ada and C compilers do this analysis when the 
routine being called was compiled previously within the 
current compilation unit, but only the Ada compiler can do 
this optimization properly when the routine being called is in 
another compilation unit. 

Ada Advantage #2: C Does Not Have a True 
Array Type Ada Does 

With C, the array declaration is actually a request for 
memory allocation. No semantics are attached ro the array 
object other than the base address of  the block of  memory 
allocated. Specifically, the length oft.he array is not automati- 
cally carried by the object either at compile-time or at run- 
time. With  Ada, an array object carries complete length (and 
other) information. When the compiler is informed about 
the shape of  an array, it may optimize more code. For 
example, on machines with exposed pipelines or long memory 
read delays, it may be beneficial for the compiler to rearrange 
the code: 
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tO beoDITle 

To do this, the compiler must know that Table ( 10 ) is 
a readable location in memory even when b is not greater than 
0. I f  T a b l e  is declared outside of  this routine and passed 
as a parameter, then all knowledge about its size is lost m the 
C compiler and the optimization is blocked. With Ada this is 
not true. C programmers may use conventions or layers of  
abstraction to carry size information with memory allocations 
to mimic a [rue array" type, but this will nor not convey the 
information to the compiler and these optimizarions will 
remain lost. 

Aria Advantage #3: C Pointer Usage Reduces 
Compile- Time Information 

Pointers are a great strength of C. However, pointer usage 
often reduces compile-rime information and this in turn 
reduces optimization. For example, in the C code: 

it may be hard or impossible for the compiler t o  determine 
that the pointers up, bp, and ¢p are all pointing at non- 
intersecting memory. Without  this information, the C 
compiler may be unable to perform vectorizing optimizations 
on the loop. Some C compilers do provide users with the 
ability to make assertions about pointer usage ro unblock 
these optimizations. The burden of  proof of final code 
correctness is (as always) on the user. 

Note that the Ada equivalent of  the above C loop: 

allows the compiler to easily determine memory intersection 
since the objects are named directly. 

Ado Advantage #4: Free Form C Loops Are 
Hard to Analyze 

Ada f o r  loops have clean compiler semantics; the 
iteration variable is automatically dechrcd, is alive unly in the 
loop, and may not be altered by code in the loop body. The 
iteration count is well defined. It is generally" a simple task to 
map Ado loops to hardware-supported looping constructs. 

The C f o r  Loop is not so well behaved. Iteration 
variables are user declared at any visible scope and may be 
alive on entry and exi[ of  the loop. They may be altered from 
within the loop. The iteration count is not easy to compute 
given the general purpose mechanism for defining initial and 
continuation conditions. It takes a great deal o f  work for a 
compiler to determine that conditions are right to map aloop 
onto certain hardware-supported looping constructs. C 
users may increase the odds of  success by adhering to coding 
standards or by hand-tuning important loops until compiler 
cooperation is achieved. 

Conclusions 
I think we can conclude that: 

1. When written and compiled similarly, most Ada and C 
programs run equally efficiently. 

2. The quality of  the compiled code is determined mostly 
by the quality of the compiler and not of  the language. 

3. There are some cases where Ada code has an advantage. 

4. In C the burden of  optimization is often in the hands 
of the programmer whereas in Ado, it is automated. 

It should come as no surprise that Ado provides optimi- 
zation opportunities that C does not. and that it takes the 
burden of  these optimizations off the back of  the program- 
mer. After all, the language was designed from the beginning 
to permit high-level programming of  real-time embedded 
systems. The differences are not enormous, but can be 
significant for applications requiring the most efficient code 
possible. 
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