
T
his issue is focused on the Internet of Things and 
the security issues that arise when interconnecting 
billions of devices, ranging from coffee makers to 
power grids. This article looks at the subject from 

a specific and rather basic perspective: Which language(s) 
should you choose to develop the software, where “software” 
means both the embedded code that runs the Things and the 
system programs that manage the networks, etc.? Choice of 
language is important since it affects the system’s reliability, 
security, and performance, as well as the ease or difficulty in 
adapting the software as requirements change. 

More specifically, this article compares C and Ada, sum-
marizing their strengths and weaknesses and suggesting when 
to use (or not use) each. These two languages are interesting 
to look at: C because it’s often the default choice for real-time 
and systems programming, and Ada because it has a successful 
(but not as well known) record in these same areas. 

C and Ada have gone through various updates since their 
inception. I’ll use the most recent version of each—C 111 and 
Ada 20122—as the basis for the comparison. These reflect how 
the languages are evolving to meet current and future techno-
logical trends and challenges, even though at present it’s more 
typical to find earlier versions of the languages in use.

C

In any kind of assessment, it always helps to go back to first 
principles. What were the main design goals for each language?  
The introduction to the 1999 version of the C standard3 distilled 
the “spirit” of C into a small set of objectives, which have guided 
and constrained both the original design and each revision:
• Trust the programmer.
• �Don’t prevent the programmer from doing what needs to be 

done.
• Keep the language small and simple.
• Provide only one way to do an operation.
• Make it fast, even if it’s not guaranteed to be portable.

In keeping  with these principles, C offers various data 
types and data-structuring facilities (arrays, structs, pointers, 
unions, enums) with straightforward and efficient implemen-
tation, conventional algorithmic features (statements, expres-
sions, functions), and modest modularization mechanisms 
(header files with function prototypes, #include directive, 
preprocessor). 

Standard header files support dynamic memory manage-
ment (malloc, free), a minimal exception mechanism (setjmp, 
longjmp), string handling, numerics, input/output, interna-
tionalization/locales, operating-system interfacing, and other 
services. Standard (but optional) and C++ compatible support 
for concurrent programming, including features that help 
exploit multicore platforms, have been introduced in C11. It 
specifies an explicit memory model, and supplies low-level 
facilities for thread management and communication. 

By intent, C has some significant omissions. It doesn’t pro-
vide generic templates (which can be approximated in part by 
the preprocessor), programmer-defined operator/function 
overloading, or object orientation, and its encapsulation sup-
port (“information hiding”) is rudimentary. 

In short, C is very much a WYSISWYG (“What You See Is 
What You Get”) language. When you write a C program, you 
have a good idea of what the resulting compiled code and data 
will look like. Thus, C becomes a typical choice for low-level 
software that needs to interact directly with the hardware. How-
ever, a simple WYSIWYG language has two major drawbacks:

• It doesn’t easily scale up to very large systems.
• In its focus on efficiency, it can sacrifice checks that are use-

ful or necessary for reliability, safety, or security.
To somewhat address the latter point, “safe” subsets of C 

have been proposed over the years. Perhaps the best-known 
is MISRA C,4 originally intended for automotive software but 
applicable to other domains as well. Static-analysis tools such 
as lint and a variety of commercial products have been used to 
detect potential vulnerabilities, although the language’s weak 
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type checking makes this more dif-
ficult than for other languages. And 
various guidelines have been pub-
lished to facilitate secure coding.5

C11 has attempted to address 
some of the security issues via lan-
guage features and libraries. For 
example, the optional Annex K 
(Bounds-checking interfaces) pro-
vides alternative versions of various 
standard functions, thus helping 
to prevent certain forms of buffer 
overflow as well as other vulnerabili-
ties. The optional Annex L (Analyz-
ability) constrains some forms of 
undefined behavior to be bounded, 
with the requirement that the imple-
mentation not perform an out-of-
bounds store.

Will these new features be widely 
implemented, and will program-
mers use them? Time will tell. But 
in my opinion, they look like a 
patch that may mitigate some vul-
nerabilities but doesn’t alter the 
original language philosophy. C 
wasn’t designed for programming 
large-scale high-integrity applica-
tions. It’s often selected not based 
on fitness for purpose, but because 
programmers know it (or it fits 
smoothly into an organization’s 
software-development infrastruc-
ture), or because of perceived inef-
ficiencies in other technologies. 

ADA

Ada is very much at the other end 
of the spectrum. Perhaps a varia-
tion of C’s principles serves as a first 
approximation to the “spirit” of Ada:
• �Trust the programmer, but veri-

fy through appropriate checking 
since programmers are human and 
make mistakes.

• �Prevent the programmer from 
doing what shouldn’t be done.

• �Keep the language kernel small 
and simple, but provide extension 
mechanisms in order to increase 
expressiveness.

• Provide one principal and intuitive 
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AN ADA PACKAGE

THIS CODELIST ILLUSTRATES a simple Ada package. The package specification, on the 

top, defines the Vector type as an array of Integer values. Different objects of this type can 

have different bounds. The Max function returns the maximum value in its parameter V. Its 

precondition is that V contains at least one element. Its post-condition captures the func-

tion’s required semantics—the returned value has to be at least as large as every element in 

V, and it must be an element of V. The Negate procedure performs the unary “-“ operation 

on each element in its parameter V. Its pre-condition (tao avoid overflow) is that no element 

can be the smallest Integer value. Its post-condition captures the procedure’s semantics; 

V’Old is the value of V at the point of call. The contracts shown are appropriate for use with 

formal methods, so that they’re verified statically, or they could be enabled as run-time 

checks to support debugging. 

The package body contains the implementation of the two subprograms. V’First is the 

index of the lower bound of V, and V’Last is the index of the upper bound. The “for” loop 

in Negate illustrates the ability to iterate over a collection (here an array) without explicitly 

indexing. Note that Ada uses “:=” for assignment, “=” for equality, and “/=” for inequality.

package Math_Utilities is
  type Vector is array(Positive range <>) of Integer;
  
  function Max(V : Vector) return Integer
  with 
    Pre  => V'Length>0,  -- V cannot be empty
    Post => (for all  Element of V => Max'Result >= Element) and
            (for some Element of V => Max'Result = Element);

  procedure Negate(V : in out Vector)
  with
    Pre =>  (for all Element of V => Element /= Integer'First),
    Post => (for all I in V'First .. V'Last => V(I) = -V'Old(I));
end Math_Utilities;

package body Math_Utilities is
  function Max(V : Vector) return Integer is
    Current_Max : Integer := V(V'First);
  begin
    for I in V'First+1 .. V'Last loop
      if V(I) > Current_Max then
         Current_Max := V(I);
      end if;
    end loop;
    return Current_Max;
  end Max; 
  
  procedure Negate(V : in out Vector) is
  begin
    for Element of V loop
       Element := -Element;
    end loop;
  end Negate; 
end Math_Utilities;
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way to do an operation.
• �Make it reliable and portable, and depend on the compiler to 

produce efficient code.
More generally, Ada’s main goals were succinctly specified in 

the introduction to the first version of the language standard:
“Ada was designed with three overriding concerns: program 

reliability and maintenance, programming as a human activ-
ity, and efficiency.”

More specifically, Ada was designed from the outset to take 
advantage of the breakthroughs in software engineering and 
programming methodology that occurred in the 1970s, with 
a focus on support for embedded real-time applications. The 
emphasis was on achieving confidence in program reliability 
(correctness), through features that include checks either stati-
cally or at run time. 

Ada is a strongly typed extensible language, with facilities 
to define new types in various categories: integers, floating 
point, fixed point, enumeration, arrays, records (structs), and 
access types (pointers). Unlike C, Ada allows the definition of 
constrained subranges of scalar values, and checks ensure that 
objects aren’t assigned out-of-range values. Subrange informa-
tion is very useful to human readers and static-analysis tools. 

Ada includes traditional algorithmic features, with a simple 
set of statements and with code modularization through sub-
programs (functions). It also has facilities for “programming 
in the large”: encapsulation/data abstraction, separate com-
pilation, packages (somewhat analogous to C header and 
code files), subprogram and operator overloading, generic 
templates, and full support for object-oriented program-
ming (OOP). Ada also includes built-in features for exception 
handling and concurrency, including a structured feature for 
state-based mutual exclusion that helps avoid race conditions.

The predefined environment of Ada includes packages 
for character and string handling, I/O, numerics, containers, 
and operating-system interfaces. Ada also defines an annex 
with standard support for interfacing with other languages 
(including C), and optional specialized-needs annexes cover-
ing systems programming; real-time, distributed, and infor-
mation systems; numerics; and safety and security (high-
integrity systems).

Ada 2012 introduced contract-based programming features 
(pre- and post-conditions for subprograms, invariants for 
encapsulated types). This significant enhancement in effect 
embeds low-level requirements into the source code, with 
checks performed either at run time or (with appropriate 
tool support) statically. The Ada example (see “An Ada Pack-
age”) illustrates the use of pre- and post-conditions; an analog 
example in C is shown in “C Header and Code File.” Ada 2012 
also increased the language’s multiprocessor/multicore sup-
port and added a number of other enhancements.

Ada was intended for embedded systems, and program-
ming at that level may involve getting down-and-dirty with 

the hardware—writing interrupt service routines, dealing 
with machine addresses and data representations, handling 
endianness issues, etc. With Ada, programmers can do all 
those things—one goal of the Systems Programming Annex is 
to give the programmer the tools to do anything in Ada that’s 
possible in assembly language.

All of this sounds like a large and complex language. Indeed, 
the inclusion of generics, OOP, and exceptions makes Ada 
quite a bit more sizable than C, although subtleties in features 

such as sequence points don’t make C the simple language as 
is commonly advertised. Skeptics might jest that, while a C 
program is WYSIWYG, Ada code seems more in the WTF 
category (acronym intentionally left unexpanded). 

QUESTIONS SURROUNDING ADA

Doesn’t Ada have some performance challenges? And if Ada 
is supposed to be used for safety-critical or high-security sys-
tems, doesn’t the semantic complexity get in the way? How do 
you certify a system where you need to show traceability from 
requirements down to object code, or where the implementa-
tion’s run-time libraries are subject to the same certification 
requirements as the application software?

These are fair questions. Ada, like any other general- 
purpose language intended for high-integrity systems, needs 
to be constrained to a safe subset, only including features with 
well-defined behavior and a simple (certifiable) implementa-
tion. Ada actually anticipated this issue and supplies a com-
piler directive (pragma Restrictions) that allows programmers 
to specify features that will not be used. If using such a feature, 
then the error is detected, generally at compile time but some-
times at run time. 

The Ravenscar tasking profile,6 a set of Ada concurrency 
features with a small footprint and simple implementation, 
is part of the Ada standard and is defined through prag-
ma Restrictions. Implementations can supply one or more 
restricted run-time profiles, corresponding to subsets at dif-
ferent levels of generality (and thus different levels of effort 
needed for certification).

Another notable example of an Ada subset is the SPARK lan-
guage.7 SPARK 2014, an Ada 2012 subset, is designed to facili-
tate formal proofs of program properties ranging from absence 
of run-time errors to compliance with a formally specified set of 
requirements. SPARK eliminates features that are hard to verify, 
such as pointers, but includes most of Ada’s static semantics. 
Projects like the NSA-sponsored Tokeneer effort8 demonstrated 
that ultra-high reliability and security is achievable with formal 
methods using conventional verification techniques.

CONCLUSIONS

C’s emphasis has always been on performance, and its ben-
efits show up most clearly when this requirement is critical 
(for example, in a software product for a competitive com-
mercial market, where a customer’s purchase decision may 
be strongly influenced by benchmarks). When reliability, 
safety, and/or security are overriding requirements, C has 
well-known defects. 

Historically, many security holes have been caused by writ-
ing past the end of an array, a bug that’s detected in Ada. Some 
can be overcome with external tools (to enforce a “safe” subset 
or to detect vulnerabilities), or with the help of the new C11 
features. However, the language wasn’t designed with support 

for high-assurance systems as a major goal. 
Ada’s emphasis has always been on the various “ilities” (reli-

ability, readability, maintainability), and its benefits show up 
most clearly when these requirements are critical (for example 
in a large, long-lived system where total software lifecycle costs 
need to be taken into account). Indeed, Ada (and safe subsets 
such as SPARK) has a long and successful usage history in 
safety-critical and high-security applications. 

So when should Ada not be used? One context is when the 
need arises for rapid prototyping or scripting. Consider, instead, 
a dynamically typed language such as Python. Another scenario 
is when quickness to market is an important goal; then a higher 
software defect rate may be an acceptable price to pay. 

How about when run-time performance (time, space) 
means the difference between a successful product and an 
also-ran? It’s certainly possible to obtain efficient code from 
Ada, and indeed technologies such as gcc,9 which incorporate 
a common code generator for multiple languages, yields the 
same performance for Ada and C on language constructs that 
have the same semantics. You can also improve efficiency by 
avoiding complex features, or by suppressing run-time checks 
after verifying through static analysis or sufficient testing that 
the checks will not fail. 

Note that Ada versus C is not an “either/or” decision. They 
actually get along well together, largely due to Ada’s standard 
interfacing support. An Ada program can import functions 
or global data from C, lay out data structures to have the 
same representation as the corresponding C data, and export 
subprograms or global data for use by an external C function. 
Therefore, a C program can be extended with functionality 
provided by Ada, and symmetrically, an Ada program can 
invoke C services. 
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C HEADER AND CODE FILES

THE C HEADER and code files correspond to the Ada package 

(see “An Ada Package”). The pre-condition for max is mod-

eled by an assert statement in the function body. The other 

Ada contracts are omitted, since C doesn’t have quantification 

expressions. 

One of the semantic differences between Ada and C con-

cerns the treatment of array bounds. In Ada, the bounds are 

accessible through the array object via V’First and V’Last, while 

in C, the array size needs to be supplied as an explicit param-

eter to the functions.

// math_utilities.h

typedef int vector[];

int max(vector v, int n);
// n is the number of elements in v

void negate(vector v, int n);
// n is the number of elements in v

#include <assert.h>
#include "math_utilities.h"

int max(vector v, int n)
{
    assert(n>0);
    int curmax = v[0];
    for (int i=1; i<n; i++){
        if (curmax < v[i]){
           curmax = v[i];
        }
    }
    return curmax;
}

void negate(vector v, int n)
{
    for (int i=0; i<n; i++){
        v[i] = -v[i];
    }
}


