@

ADA: PAST, PRESENT, FUTURE
An Interview with JEAN ICHBIAH,
the Principal Designer of Ada

T

REPORTS AND ARTICLES

Since the mid-1970s, the U.S. Department of Defense has been laying the
groundwork for a major new computer language that may substantially
displace FORTRAN and COBOL in the years ahead. With Ada just now
starting to be used, Communications felt it would be timely to conduct an
interview with Jean Ichbiah, the principal designer of this new language.
Ichbiah discusses the evolution of Ada, evaluates its success so far, and

speculates on its future.

Q. How did the Department of Defense (DoD) come to
sponsor a new computer language?

Ichbiah. This is not the first time the DoD has em-
barked on trying to standardize a new language. They
did that successfully with COBOL. What made COBOL
a widely used language was not only its design merits.
Rather, it was that the DoD required COBOL to be used
on all defense contracts. Even back in the early 1960s,
the DoD had a philosophy of trying to bring some order
into software, to permit more portability of programs
between different computers, and thereby to enhance
productivity.

I mention COBOL because it set an important prece-
dent. COBOL is a successful instance of a language
being spread to a worldwide community. If you com-
pare the history of COBOL to that of PL/1, you'll see
that even IBM didn’t have enough weight to spread a
language; but the DoD did.

Q. What were the DoD’s motives in pushing COBOL
back in 19607

Ichbiah. The motives then were exactly the same as
they are now: to stop the proliferation of languages and
dialects. At that time most programs were written in
assembly language; they were difficult to maintain and
therefore costly and unreliable.

Communications of the ACM

COBOL—an acronym for “common business-oriented
language”—was an attempt to move toward higher pro-
grammer productivity and better interchangeability of
programs between different machines.

Now, coming to the genesis of Ada: Around 1975 the
DoD did some studies to see what could be done to
control escalation of software costs. At that time, they
were spending over three billion dollars a year on soft-
ware.

Q. Was that for developing new software, for main-
taining existing software, or both?

Ichbiah. That was the total software budget for devel-
oping new software and maintaining old software.
When the DoD first realized the magnitude of this
amount, they started to analyze the situation and dis-
covered that they were using about 400 different lan-
guages and dialects—quite a large number.

The first major conclusion the DoD derived from
these studies was that to control software costs, they
would have to make a major investment in tools to
enhance productivity. The second major conclusion
was that they would need to improve the average pro-
grammer’s level of programming methodology. The de-
velopment of the new Ada language was itself a conse-

© 1984 ACM 0001-0762/84/1000-0990 75¢

October 1984 Volume 27 Number 10

quence of these first two conclusions: It was out of the
question to develop tools and education strategies
around 400 incompatible languages, few of which had
been formally designed.

Q. How can you explain such a proliferation of dia-
lects?

Ichbiah. Well, there would be an application, and
some clever system programmer would create a small
change in the current language to make it a little “eas-
ier” for that application, thinking he could improve pro-
ductivity. What he did not realize was that for the next
20 years, 10 generations of programmers would have to
learn that dialect in order to maintain the program.

Now, think of a programmer maintaining this pro-
gram. It looks like COBOL, so he thinks it is COBOL.
It’s going to take him some time to realize that it does
not mean the same thing. This new dialect has imposed
-an enormous learning burden, which is amplified by
the fact that it’s hard to develop training methods and
effective program documentation tools for a dialect that
is not widely used.

Spreading a language is costly. It requires having a
very rigorous language definition to ensure that people
who communicate with this language mean the same
thing when they use it. From my experience with Ada,
I can tell you that the development of a rigorous stan-
dard requires a significant amount of work. The Ada
development started in 1977. We had a proposed stan-
dard document in July 1980. It took from July 1980 to
February 1983 to produce the ANSI standard for Ada.
In producing this standard, my group had to review
7000 comments produced by experts from 15 different
countries. This involved hundreds of authorities
around the world. It is of course out of the question to
do that for 400 languages. When you have that many
languages, they are not going to be as rigorously de-
fined.

Training is also a factor. If you look in technical
bookshops, you will already find more than 50 different
books on Ada. If you want to train programmers on
Ada, you already have good material to teach them the

language.

Q. Is lack of portability annther liability of language
proliferation?

Ichbiah. The portability issue has several dimensions:
portability of programmers, portability of programs, and
portability of expertise. :

In his Turing lecture three years ago [3], Tony Hoare
expressed some doubts about working toward a stan-
dardized single language. Another alternative, he sug-
gested, was to start from a smaller language, like Pascal.
Then whenever you had certain applications, you could
make specialized extensions of the language toward
these applications.

Many of us consider this approach to be dangerous. It
fails to address the pitfalls of multiple languages and
dialects. People considering a given domain find that

October 1984 Volume 27 Number 10

Reports and Arti

The Ada language was designed with three overriding concerns: a
recognition of the importance of program reliability and mainte-
nance, a concern for programming as a human activity, and effi-
ciency. As head of the Ada design team, Jean Ichbiah worked to
synthesize these goals into a viable programming language. This
effort culminated with the achievement of ANSI standardization in
1983.

Before working on Ada, Ichbiah headed the Programming Re-
search division at Cii Honeywell Bull, where he supervised research
in the design and implementation of programming languages and
projects in the areas of programming methodology, software tools,
and compiler optimization technigues.

Ichbiah has authored numerous publications in the international
literature on programming languages, compiler technology, software
productivity, and programming methodelogy, and is the founder and
chairman of Alsys, Inc., a company that dzvelops and markets Ada-
related products and services.

they need extension A for a certain application. An-
other group in a different domain develops extension B
to meet another application. So far so good. If A and B
were in totally different worlds, we could perhaps sur-
vive with a situation like this.

The difficulty arises when these applications are so
successful that we want to mix them, put the two to-
gether on a computer and have them interact. This puts
us in a very dangerous area because of the language
extensions. Although A and B lock very much alike,
they are sufficiently different to create the risk of ad-
verse consequences. When the first group wrote some-
thing, they meant something very specific. People from
the second group will place their own—different—in-
terpretation on what the first group wrote. As a result,
the program will execute something that is not what
was intended.

In developing a unique language, we want a language
for which there is a single interpretation for all people
who use it. ;

Communications of the ACM

Reports and Articles

Q. Who defined Ada’s requirements?

Ichbiah. The requirements were developed by the
DoD under the leadership of David Fisher.! He con-
sulted experts from the military, from industry, and
from academia. not only in the United States but
worldwide. It is the first time that a completely sepa-
rate group has defined the requirements for a program-
ming language.

If you were planning a house, you would have your
dreams and your requirements; you would have so
many children and need so many rooms. You would
specify your requirements—not an architect. You
would then select an architect and say, “These are my
requirements. Build me a house that satisfies them.” Of
course there is interaction between you and the archi-
tect. But it is important that these two functions—the
specification of the requirements and the design that
satisfies them—Dbe separate.

If you look af the design of previous computer lan-
guages, it didn’t happen that way. Take Pascal, for ex-
ample. The same person decided what the language
should do and how it should carry out those objectives.
It’s like having an architect design your house to suit
his needs. It is a very good sign of the maturity of our
profession that there was a completely separate group
defining Ada’s requirements.

I see the global architecture of Ada as a
cathedral, with all the architectural

lines interwoven in a harmonious -~
manner. I would not do it dszereutly 1f
I had to do tt over agam.

The development of the language requirements took
nearly three years. The Strawman requirements ap-
peared in 1975; Woodenman also appeared in 1975,
Tinman in 1976, and Ironman in 1977. These were doc-
uments stating, in progressively greater detail, what re-
quirements the language was expected to satisfy.

The Ironman requirements attracted me very early in
the game. The preamble demonstrated a keen under-
standing of today's software problems. The stated key
objectives were to improve the reliability, readability,
and maintainability of programs, along with more class-
ical goals like improving portability and efficiency.

If these requirements had been written in 1960, they
would probably have emphasized portability and effi-
ciency, but I doubt if they would have stressed reliabil-
ity and maintainability above all. These concerns came
to the fore in the 1970s.

[found it interesting that the Ironman document

! See Grady Booch's Software Engineering with Ada [1] for a more detailed account
of the history of Ada’s development.

Communications of the ACM

stated, “The language should promote ease of mainte-
nance. It should emphasize program readability over
writability. That is, it should emphasize the clarity, un-
derstandability, and modifiability of programs over pro-
gramming ease” [4]. That was quite new. For many
years the emphasis had been on creating languages that
made it possible to write programs very fast. It took
years for the software industry to realize that this was
an improper goal: The development of a large program
may take less than two years, whereas that same pro-
gram may have to be maintained for over 20 years.
Even if it takes a little longer to write it, it is far more
important that a program be readable than writable.
For 20 years after the program is written, programmers
will have to read it to maintain it. And the easier a
program is to read, the easier it will be to maintain.

Q. How did you happen to get involved in Ada?
Ichbiah. [have been working on programming lan-
guages most of my life. In 1972, I was working for Cii
Honeywell Bull and was given the task of developing a
system implementation language. We called it LIS,
which in French stands for “Langage d'Implémentation
de Systémes.”

I was given objectives quite similar to what would
later be the Ada requirements. The language had to
improve the reliability of producing operating systems,
and it had to improve maintainability. It was far more
important that the programs be readable than easy to
write. We produced a first version of LIS in 1972 and
the final version around 1974.

During all these years, I participated in the work of
international groups that were searching for better lan-
guages: the IFIP working group WG 2.4 on System Im-
plementation Languages and the Purdue-Europe “Long
Term Procedural Language” group. Within these groups
there was a general feeling that the major languages in
use (COBOL, FORTRAN, PL/1) were really outdated.
These might have been good languages, but they re-
flected the technology of the early 1960s; they suited
the economic ratios (i.e., hardware costs versus pro-
gramming costs) of a time dominated by the over-
whelming price of hardware. All the effort was directed
at making sure that the hardware would be operating
24 hours a day. Today, hardware is cheap, and we want
to use it to maximize the productivity of programmers.
The relationship is inverted.

So there was this feeling that we had to develop a

- better language technology. In the United States, Colo-

nel William Whitaker was starting to organize what
would later become the Ada program. [met him in
1975 in one of these working groups, and he showed
me the Woodenman and Tinman requirements. I found
them extremely interesting, and we started to interact. -
I showed him the kind of work we had done on LIS,
which was a first step in the direction DoD was looking
for.

In 1977, Whitaker encouraged us to bid on the Ada
language design project. We were one of 20 bidders.

\
|

October 1984 Volume 27 Number 10

From these, the DoD selected four teams. They were
color-coded Green, Red, Blue, and Yellow. We were the
Green team. That is why the covers of the Ada manuals
are always green—for a long time it was called “the
Green language.”

The DoD wanted the four teams to develop sketches
of what the language could be. After six months there
was a public evaluation of these four sketches. In 1978,
the Green and Red teams were selected to continue,
and in May 1979 the final choice was announced: The
Green language became preliminary Ada.

After 1979, my Green team continued alone during
the so-called “Test and Evaluation” phase, during
which about 100 teams around the world tried to re-
code applications in this preliminary Ada language.
These teams reported the drawbacks they found, what
had to be improved, etc. Using this first experience and
knowledge, we produced, in 1980, a proposed standard
for the new language and finally, in February 1983, the
Ada ANSI standard.

Thus, it took from 1977 to 1983 to produce a stan-
dardized language. The process involved more than
1000 people from around the world.

Q. How could you handle the comments from such a
large number of people?

Ichbiah. Clearly, this was a problem in itself. During
the ANSI standardization, my team reviewed and proc-
essed around 7000 comments on the proposed standard
and on later drafts. The nightmare I always had was
that somebody would show me a flaw in the language
definition, that I would agree that there was a defect,
but that I would forget to correct it. This was possible
when there are 7000 comments. If you don't make a
change on a comment you disagree with, that’s fine.
That is the designer’s prerogative. But if you agree with
a suggested change and forget to make it, it’s terrible.

So we computerized all these comments, created a
database of comments. When we read comments, we
attached our own reactions to them. That enabled us to
produce mechanical checklists, just to avoid this night-
mare of forgetting to make a change that [had agreed
was needed.

Use of such a database of comments is probably an-
other thing that is new in language design. It is similar
to what a building constructor uses to make sure he
does not forget certain stages of the construction proc-
ess.

Q. Have there been any major changes in Ada be-
tween 1978 and 1983 as a result of the feedback you
received?
Ichbiah. Yes. But first let me say that [see myself
really as an architect. My work was not to invent new
things; it was not research work, it was architectural
work. I had to integrate the best available materials to
construct the building that would best suit the require-
ments of the users.

As with any design, you end up with a product that

October 1984 Volume 27 Number 10

Reports and Article

is not necessarily perfect, but you make the best possi-
ble compromises to satisfy the requirements.

Q. Looking at the design you had in 1979 when you
first completed the Green language, how would you
compare that with ANSI Ada?

Ichbiah. If you looked at Ada from a distance, you
would not see much difference between the initial lan-
guage and the final language. The structural lines, the
foundations, were correct to start with. If they had not
been correct, no further improvement would have been
possible. So the structure has remained stable. But pub-
lic feedback has resulted in a very high level of polish-
ing, which has made Ada more usable to programmers.

Q. There have been critics, such as Tony Hoare, wheo
consider Ada to be too complex. Would you care to
comment on that?

Ichbiah. Some of these critics take a mathematical
view of complexity that is not necessarily applicable:
They usually underestimate the abilities of the human
mind. My own view of complexity and simplicity is
more influenced by architecture. (In fact, my training
initially was as a civil engineer.)

The human mind has an incredible ability to under-
stand structures. Provided it understands the major
lines of a structure, it will make inferences and imme-
diately see the consequences. When you judge some-
thing, the complexity is not in the details but in
whether or not it is easy to infer details from major
structural lines.

From this point of view, I consider Ada to be very
simple. The experience we have had in training people
in Ada is that once they understand the major struc-
tural lines—something we are usually able to convey in
a three-day course—they find that they can rely on
their intuition to supply the detail correctly.

Consider a large auditorium. There are two ways to
look at it: the designer’s and the mathematician’s. The
designer creates a thick set of construction documents.
If you gave these documents to a mathematician, he
would probably say, “These documents are terribly
complex, and it is therefore risky to construct this audi-
torium. People will never find their way out.... I urge
you to not construct that auditorium because it is going
to collapse”

Now, the reason for preparing these construction
documents is to make sure that the contractor will
build exactly the auditorium that is planned, that the
electric wiring will be where it belongs, that the curve
of the seats will be such that everybody can see very
well, that the acoustics will be ideal, that sprinklers
and other fire control provisions will be effective, etc.
The complexity is in the design.

Now, that does not mean that the user of the audito-
rium is going to find it complex. Walking into the room,
he immediately understands its structure and finds his
way to his seat directly.

This analogy applies very much to Ada. The major

Communications of the ACM

Reports and Articles

architectural lines of this language are simple, which
means that users find their way very easily in using it.

Q. Is Ada in its final form right now? Is it to be
frozen as it now is for the next 30 years? Under what
circumstances do you see changes being made?
Ichbiah. Right now the language is certainly frozen.
The ANSI standard was issued in February 1983, and
the standard is a freezing point. About every five years
or so one does a revision of a language. The only lan-
guages that are not revised are dead languages like San-
skrit or Latin. The needs of the computer profession are
evolving. And as they evolve, languages need to be
revised to serve their users better. Ada is no exception.
Around 1990, the need for an Ada revision is likely to
arise.

Q. Would you expect that to be a relatively minor
revision?
Ichbiah. It is probably too early to say, but I tend to
think it would be a very minor revision. Aside from
revisions, though, there will always be a need to pro-
vide interpretations. This is true for every language.
_This is similar to what the French Academy does in
standardizing the French language. Every now and
then they meet to decide what to do about certain am-
biguities. Definitions are made as precise as possible,
but sooner or later somebody comes up with a point
that needs to be resolved.

Q. Isit not rather unusual to have a language stan-
dard so early in the development?

Ichbiah. The French humorist Pierre Dac once said,
“The Leaden Rule is: shoot first, aim second, think
later.” That is precisely what was done in developing
previous computer languages. People designed a lan-
guage. Then, when they had many compilers, they dis-
covered that different compilers did not implement the
language consistently. Only then did they develop a
standard. That is doing things back to front. By the time
you have your compilers, the harm is already done and
you can only standardize on some more or less com-
mon sublanguage.

Ada represents the first instance in the history of
programming languages of things being done in the
right order. That is an important sign of the maturing of
this profession.

For Ada, we first created the design—the major ar-
chitectural lines of the language. Next, we standardized
the language, made sure that the description of the
language was precise, and that everybody agreed on the
definitions. Then a validation facility was produced: a
tool to check that compilers conform to the standard.
Finally, the compilers appeared.

For users it is important that the compilers interpret
the language consistently and in the same way. It is
their best guarantee of program portability. The valida-
tion actually checks that the compilers implement the
full language, and not just a subset. And to a certain
degree, it checks that there is no superset. Both of these
aspects are essential. We want the language to be the

Communications of the ACM

same for all users. That is their best guarantee that an
Ada program will be usable on all computers.

Q. Looking back, what do you think are the key fac-
tors that enabled your team to win in the Ada compe-
tition?

Ichbiah. A key reason is that I started this work five
years ahead of my competitors— I am referring to my
work on the LIS language at Cii Honeywell Bull. We
had had experience in developing a language with re-
quirements that were very similar to Ada’s.

It turned out that one of the superiorities people
found in our Green language (Ada) was its aesthetic
dimension. Perhaps my competitors came from a more
theoretical and mathematical background, and less
from an engineering background, as I did.

The designers of the Red language, Ben Brosgol and
later John Nestor, took a more mathematical approach.
Some of their ideas were actually so good that I bor-
rowed them in a later phase. They devised their lan-
guage to appeal to mathematically oriented people. But
the Red language did not have the kind of aesthetic
dimension that the Green language had. The Green lan-
guage appealed to people. They liked it. They were
pleased with it. This appeal came from what [men-
tioned earlier: that the major program structure was
clean and apparent.

Ada’s package structure also had an immediate appeal.
This concept—probably the key feature of the lan-
guage—creates a very clean separation between the vis-
ible part (the interface with the user) and the package
body (the domain of the implementer). The simplicity of
Ada’s textual structure lets people see immediately
how they can write programs that will be appealing to
read.

Q. You said that a key feature of Ada is its package
structure. What is that, exactly?

Ichbiah. Let me use an analogy: Consider a watch. We
can view it as an Ada package. It has a set of entry
points: a procedure (or button) called Select to select a
given function of the watch; a procedure called Set, to
reset the date; and a procedure for displaying the cur-
rent time. This is the user’s view of the watch.

If there was nothing more to the watch than these
buttons, it would not be able to perform its functions.
There has to be something inside the watch: a mecha-
nism to implement all the promises on the outside. In
Ada, you can collect the facilities you want to provide
into a package. The user’s view of these facilities is
defined by a package specification; it is the visible part of
the package. The programs that provide their mecha-
nism are what we call the package body. It is a general
rule i Ada that the specification (the user’s view) and
the implementation are always presented separately.

This package structure had immediate appeal. You
can readily see how this concept applies in everyday
programming. You have a programming team with an
application. The team agrees on the different packages
that they need to provide and on the users’ interface to

October 1984 Volume 2-7 Number 10

each package. Each subteam goes away and develops
the package bodies—the means for implementing the
promises.

Q. Do you think that this package concept was the
main reason the DoD selected the Green language?
Ichbiah. There were other reasons, too: For example,
another principle extensively used in Ada is linear read-
ing. How do you read regular text? You read the first
line first. When you're finished with that, you read the
second line. When you reach line four, your knowledge
comes from lines one through four. You don’t know
anything about the lines after that.

Now, in the past, many programming languages
didn’t conform to this linear-reading property. Ada
does. You read an Ada program as you read a normal
text, line by line. When your understanding has
reached a given line, you don't depend on things that
come later. This approach is really an extrapolation of
an important idea introduced years ago by Dijkstra. In
1968, he wrote a famous letter in which he stated: “Our
mind is better geared to understanding static structures
than dynamic ones” {2].

Programs are only going to be correct if we understand
that they are correct. If we can develop programs in
such a way that we can statically understand whether
they are correct, they are more likely to be correct. In
Ada we tried to reduce the dynamic dimension of pro-
gram execution. Whenever we can write our program
so that we can qualify program points by static proper-
ties, we make it much easier to understand, and we
tremendously improve our chances of writing the pro-
gram correctly.

When we construct a building, we are not trying to
create the ideal shape. Ideal in terms of what? We are
trying to create a shape that we can construct. So we
are always influenced by constructability factors.

It is the same in writing a program. We are trying to
write a correct program. We could construct a very
intricate, complex program, but we might never finish

the job or get it to do what we want. So we are limiting

ourselves to programs that we can understand.

Q. Does program readability depend on how the pro-
grammer writes his program or on the language he
chooses to write his program in?

Ichbiah. It depends on both. Of course it is possible to
write programs that are difficult to read in any lan-
guage. But a language like Ada allows you to write .
more readable programs than languages like FORTRAN
or COBOL do. Certainly, writing a readable program
demands a special effort from the programmer. But
with Ada, the programmer has a powerful tool that
enables him to write good programs.

Q. Could you talk about where Ada is today? Is it
being used by the DoD right now? Is it being used in
industry?

Ichbiah. Ada exists today—there are compilers that
compile Ada. As in other domains, when a new tech-

October 1984 Volume 27 Number 10

Reports an

nology appears, initial interest is high—this was the
case when Ada appeared in 1980. Then there is a time
when professional skeptics take over and say, “The
technology is too complex, they’ll never get it standard-
ized. We'll never understand it. They will never be able
to implement it.” I think we are beyond that stage now
that we have Ada compilers.

Q. Who came out with the first compiler?

Ichbiah. The first compiler was developed at New
York University by Robert Dewar and his group. Its
significance is more of a historical nature, because it
was an interpreter—rather slow, and more of a teach-
ing tool than anything else.

The second compiler, developed by Rolm and Data
General, has more industrial importance. Validated in
June 1983, this was developed for a Data General
Eclipse minicomputer. The third compiler to be vali-
dated was created by Western Digital for their Micro-
Engine; it was the first compiler for a microcomputer.

Several companies around the warld are produciiig
compilers for many different machines. In July 1984
Digital Equipment announced prevalidation of the VAX
compiler. My own company, Alsys, is producing Ada
compilers for microcomputers.?

Q. Are there any mainframe compilers yet?

Ichbiah. Not yet. But there are several companies
working on it. For example, there are two major
government-funded projects in the United States, one
by Softech, the other by Intermetrics. They are creating
compilers for machines like the DEC VAX and the IBM
370. By the end of 1984, would not be surprised if
there were 20 validated compilers, including some for
mainframes. Some compilers are being developed un-
der DoD contract. Others are being developed by pri-
vate sector companies—computer manufacturers, soft-
ware houses, etc.—because they see a market.

Q. Is the DoD using Ada right now? :

Ichbiah. The DoD has issued an important directive
stating that all mission-critical applications must be
programmed in Ada as of January 1984. They must
have been waiting until they had actual evidence of the
feasibility of Ada compilers. This evidence was bril-
liantly provided by the Data General compiler several
months ago. This new DoD directive is definitely a
move by the DoD to do something similar to what they
did for COBOL in the 1960s.

Q. Is Ada going to be used within the DaD just to
write new programs, or do you also expect to see peo-
ple rewriting existing programs in Ada?

Ichbiah. 1think they would tend to use Ada for new
programs at first. There may come a time when the
proportion of new programs is so great that it will be
worthwhile to reiwrite the old ones. Initially, there will
probably be very little rewriting of old programs.

3 This was the compiler situation at the time of this interview, in early 1984—
Ed.

Communications of the ACA

¢

Reports and Articles

Q. To what extent are industry and business going to
use Ada—especially those industries not connected
with the defense establishment?

Ichbiah. The only thing that will stop the private sec-
tor from using Ada is not having Ada compilers. The
minute compilers are widely available, Ada will pro-
vide industry with solutions far superior to what they
have had in the past. Ada will be in great demand in
industry. The choice will be more and more for Ada in
the private sector. My own company is actually focus-
ing 100 percent on the private sector. We consider the
defense sector a subfield of the general sector. After all,
COBOL was very strongly supported by the DoD, but
who would say today that COBOL is a military lan-
guage?

Q. Suppose [were the president of a company. Why
would I be interested in Ada? What would be the bot-
tom-line benefit for my firm?

Ichbiah. The benefits are in several dimensions. You
are interested in programming productivity, reliable
programs, easy maintainability. This means you are in-
terested in having programs of sufficient readability
that you will be able to assign new programmers to
maintain these programs. And you don't want it to take
years before they can understand what those programs
mean.

You are interested in efficient programs, although
perhaps to a lesser degree than in the past. Neverthe-
less, Ada provides that too.

You are also interested in being able to move people
quickly on the job—portability of programmers. If you
hire a new programmer and your company is using
Pingol 3 (or whatever). you’ll have a problem teaching
him Pingol 3. Finally, Ada will provide you with a
better answer for reliable programming.

Q. Will Ada substantially reduce programming cost,
that is, the cost of writing an initial program?
Ichbiakh. Ada will reduce the life-cycle costs. I don't
think it will necessarily reduce initial programming
costs—it may even increase them. But what good does
it do to reduce the cost of programming if you spend
more time (money] for debugging, servicing, and main-
taining your program? Ada looks at the total life-cycle
cost. It is there that you produce the real gains.

In programming in Ada, people have to put more of
their intention down than they would in, say,
FORTRAN. They have to think a little harder about
what they are trying to do. Consequently, they may
spend more time writing the initial program. But this
program is much more likely to be correct. They are
more likely to spend much less time debugging and
maintaining that program later on.

Q. Will Ada programs still have to be debugged?
Ichbiah. Yes. but it will require less time than before.
More errors will be picked up by the compiler. Main-
taining the programs will be much simpler because the
programs will be more readable.

Communications of the ACM

Q. Would an industrial company use Ada to address
both engineering and business problems?

Ichbiah. Yes. A firm would use Ada both for engineer-
ing and for business problems, including real-time sys-
tems. which is another dimension that you could not
easily treat with previous languages.

Q. Is Ada something all businesses and industries
should be interested in?

Ichbiah. Ada is still a traditional language in that it is
efficiency oriented. At the other end of the spectrum,
there are applications where you might not care if an

. application runs a thousand times slower. Ada is still

meant for programming applications where efficiency is
important. If you are in a domain of applications where
you don’t care about efficiency at all, there may be
other tools. 5

Q. Could you highlight Ada activity in Europe? What
countries and industries are particularly interested?
Ichbiah. There is tremendous interest in Ada in Eu-
rope. There is an organization called Ada-Europe that is
very similar to ACM’s AdaTEC. There is a lot of inter-
est in France, England, Germany, Italy, Denmark, and
Sweden. In Sweden the telephone industry has shown
very keen interest. At seminars I give in France, many
attendees are people from the data processing depart-
ments of banks and insurance companies. They are
trying to determine what place Ada should have in
their three-year plans.

Q. Is there more interest from data processing people
than from scientific and engineering people?

Ichbiah. There is interest from engineers, but I was
expecting that type of interest. | was surprised by the
early interest from data processing people. I was ex-
pecting that interest to develop later.

Q. Ada statements are basically in English. When
Ada is used in France, Sweden, etc., do they use a
version with words in their native language?

Ichbiah. There are only 63 key words in Ada. Even
though these are English words, they are not translated.
They don’t bother a Swede or a Frenchman, ta whom
they are just symbols.

Q. Do you think Ada will be around forever, or do
you foresee that Ada will start to be displaced by an-
other language in 10 or 20 years?

Ichbiah. [expect that Ada will eventually be dis-
placed by other means of formulating problems on a
computer. Technological evolution will alter the eco-
nomic factors (i.e., hardware versus software costs).
Ada corresponds to our time because it is still a very
efficient language. Thirty years from now, though, we
may be able to produce machines that are a million
times faster at the same cost. Obviously things that we
consider economically unjustified now might become
justified then. In that case, efficiency-oriented lan-

October 1984 Volume 27 Number 10

guages like Ada may become obsolete for more and
more tasks.

I certainly hope that 30 years from now our view of
efficiency will be radically different. In 1984, any pro-
grammer has a certain intuition about the amount of
computer resources he is willing to devote to the
achievement of a certain task. It is an economic judg-
ment. Ultimately, it translates into dollars spent for a
given task.

Let me give an extreme comparison. In solving a
problem in 1984. let us assume I have a choice between
doing an exhaustive search that would mean evaluat-
ing 10,000 solutions, and developing an elaborate algo-
rithm that will find the best solution directly. How do I
choose between the two? If the programming of the
elaborate algorithm will take me two days, then this
has a price.

Yet I may or may not be willing to pay that price. Let
us suppose that the brute force evaluation of 10,000
solutions takes only one second of computer time. Then
that is what I am going to choose. If, on the other hand,
the brute force evaluation takes a year of computer
time, I will invest the two days in programming.

When I use the words “brute force,” I am implying it
is a bad solution. But such an implication is not correct.
Whether it is a bad solution depends on our perception:
of how much computer time we are willing to spend.

"To summarize, Ada is part of a generation of lan-
guages that describe how to do things in an efficiency-
oriented way—I am talking about efficiency in the
sense of the amount of computer time required to exe-
cute a certain operation. When the economic factors
are radically changed, we may need to use other tools.

Q. Isit important that a professional programmer
today learn Ada? What is your advice to program-
mers?

Ichbiah. They should be aware of Ada. They should
be prepared to learn its concepts. When programming
in Ada becomes a possibility for them, they should
switch if they think it is worth it. To reach this deci-
sion, they should learn the language and form their
own impressions of Ada’s potential. They should switch
only when they are completely convinced that it is to
their advantage to do so.

Q. It is easy for programmers to learn Ada? How
long does it take a typical programmer to become pro-
ficient?
Ichbiah. Learning means going from a given state of
knowledge to another state. So learning time depends
not only on the ending point but on the starting point.
-Suppose you asked me how long it takes to learn Eng-
lish? I would answer that it depends first on whether
you speak any related languages like French or Ger-
man. [t also depends on whether you are trying to
reach the first level, whether you want to be a profes-
sional writer. and so on.

People who have already learned a structured pro-
gramming language like Pascal are probably going to

October 1984 Volume 27 Number 10

Reports and Articles

learn Ada in a very short time. For a Pascal program-
mer to reach an equivalent level of programming in
Ada will take less than a week. And learning to exploit
Ada’s better techniques may only be a matter of a few
additional weeks. Similarly, it will not take long for a
FORTRAN programmer to reach the corresponding
level of programming in Ada. Already at this stage he
can reap certain benefits in readability and reliability.

I have taught Ada and LIS to people with very differ-
ent backgrounds. I found that people get very enthu-
siastic. They are seduced by the cleanliness of its struc-
tures, and once that happens, they easily find their way

in it.

Q. Are you personally satisfied with Ada as it is
now?

Ichbiah. Now that we have completed Ada, I must say
I am extremely pleased. I am pleased with the global
architecture of the language. [see it as a cathedral,
with all the architectural lines interwoven in a harmo-
nious manner. [would not do it differently if I had to

do it over again.

Q. What are the major lessons you learned from de-
veloping Ada?

Ichbiah. 1 have learned that when a team is motivated
it can achieve fantastic things. I have learned it is possi-
ble to do a development like Ada with a large number
of people around the world if you use network technol-
ogy for communication. We used the Arpanet and Tym-
net to communicate all the design documents. [have
learned that it is not possible to create a language that
satisfies ambitious needs if you are just one or two
people sitting in a corner. We benefited greatly from
the large number of international interactions that we
had. But of course, a design like this has to be done
with a single strong leader, since it is very important
that the major architectural lines of a language be kept
consistent: Consistency can only be achieved with one
person defining the major lines. :

REFERENCES

1. Booch. G. Software Engineering with Ada. Benjamin Cummings,
Menlo Park. Calif.. 1982.

2. Dijkstra. E.W. Go to statement considered harmful. Commun. ACM
11, 3 (Mar. 1968). 147-148.

3. Hoare. C.A.R. The emperor’s old clothes. 1980 Turing Award Lec-
ture. Commun. ACM 24, 2 (Feb. 1981). 75-83.

4. Requirements for high-order programming languages. IRONMAN.

* United States Department of Defense, Washington, D.C.. Jan. 1977.

CR Categories and Subject Descriptors: D.3.0 [Programming Lan-
guages): General—Ada; K.2 [Computing Milieux|: History of Computing
General Terms: Design. Languages

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage. the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

Communications of the ACM

997

