Reproduction prohibited without permission of the author

O M A Smith - May not be reproduced without permission

Obj ect-oriented Software in Ada 95 Second Edition

Object-oriented Software in Ada 95 Second Edition

Michael A. Smith

School of Computing
University of Brighton

O M A Smith - May not be reproduced without permission

Contents

CONTENTS
1.1 GLOSSARY OF TERMSUSEDcoooiiieriericreereesrersesessressesessssssesessse s ssesssssssessssssssesssssesssnsasssssessassessenens XV
1 INTRODUCTION TO PROGRAMMING

11 COMPUTER PROGRAMMING......coottrtrireririristsesesesesesesesesesesesesssesesesesesesesssssesesssssesesssssesssssssesssssssesesssssesesssssesenens
1.2 PROGRAMMING LANGUAGES.......c.coetitiieieieiriete ittt ettt bbbt bbb bbb bbbt bbb bbbttt ea ettt eses
13 RANGE OF PROGRAMMING LANGUAGES
131 Computer programming [ANQUAGES.eurreerreerreeireseesessesessessssessssess s sssss s ssssssssssssesssssssssessssssssenes
132 The r0l€ Of 8 COMPITEL ...t
14 A SMALL PROBLEM ..ottt sttt sttt bbbt b bbb bbbt b bbbttt b bt
15 SOLVING THE PROBLEM USING A CALCULATORcoirtrerirererereresssssesesssssesesens 3
151 Making the SOlULION MOF € GENEI Al ..o 4
16 SOLVING THE PROBLEM USING THE ADA 95 LANGUAGE..........cvrirrerrrerenesens 4
161 Running the program
1.7 THE DECLARE BLOCKotttetitrireststsiseststsestsssssesesesssesesssssssessssssssssssssssssssssesssesssssssesssssesssssssesasssssesesssesesesssnseseseses
18 THE ROLE OF COMMENTSootiitrirtstrisesesistsesesisesesestssse et ssases s ss sttt sttt st sttt sttt ssste bt ssssebesssesesesssssesesesnes 7
1.9 SUMMARY ..ottt sttt st A et e e 8
110 A MORE DESCRIPTIVE PROGRAMooooirrririririsesisestsesesesesesesesesesesesesesesesesssssesesssssesssssssesssssssesssssssssssssssesssnns 8
1.10.1 RUNNING thE NEW PFOGF GIM...ervuiiiatiiecreeerseseseseeesseses e ssese st s bbbt niees 9
111 TYPESOF MEMORY LOCATIONccirirtririrerireserisestsesesesesesesesesesesesesesesesssesesesssssesesssssesssssssesssssssssssssssssssssssessssns 9

1.11.1 Warning
112 REPETITION

113 INTRODUCTION TO THEWH LE STATEMENT ...ooiiierireteenerestesesesessee e eessessssssesesessesssssssesssssssssssssssesanens 11
00 T R 7o T [1) 1T 12
1.13.2 AWNi | € Statement iN ACA O5.......ccieeererer e s 12
1.13.3 USINGthe Wi | € SEAEMENT......cciiecireciee e 13

L. 14 SELECTION ...uiiiceceserteeeeseseeteesesteseesessesssessssssenssessesessssssesssessesssensssssensnsssssenssensesssensnsesensssesessnsssnsensssnsesssnnsnsssanens
1141 Usingthei f statement

115 SELF-ASSESSMENT ..otiieirtcteeresetreseseese e esessessesseseesessesesessesssesssessesessssnsenssensesssensssesensssssessnsssnsenssessesssensssesanens

116 PAPER EXERCISES.......cotoitcteiresteeiesestesssesasassesssesseseessssesssessesssessssssessnsssssensssssessssnsnsssensssesessnsssnsessssssessssnsnsesanens
SOFTWARE DESIGN

2.1 THE SOFTWARE CRISIS......o et irsse st esesesasseesessssssesesessssessssssenssessessssssnssssssnsesasenssessessnsssnssssssssesssenses 18

2.2 A PROBLEM , THE MODEL AND THE SOLUTION......ccstterereeueereressenesesieseesessssssessssssenssessesssssssssssessesssenses 18
221 Responsibilities

2.3 OBUECT S, it teeetresesteesesaesssesestesesesssaesesesessesenesessesesessssesenssesesensssnsessnensesasensssnsessnssnsesessnsesesensssnsensassessnensnsesanens
231 TRE CAr @S AN ODJECL.......ceieeeieeeeieeet et e 20

2.4 THE CLASS ...ttt te et ts e e e as e s e e esa et e se et e s aaese e e e ae e e A e Re e ae b e sene e e e eae et e s e Re e ne et ene e e nseneneneennne e en 21

25 METHODSAND MESSAGEScoccererireeeiiresieiesssssesessssssesesassesssessssssessssssessnsssssesssessesssensssssensssssnsensssssessssnses 21

26 CLASSOBJECTS

2.7 INHERITANGCE.ccteeireeterirerteeesessssesesassssessestesesessssssesessesassnssessesssessesssessssesessnsssnsenssensesesensssnsenssssnsenssensessnenses

2.8 POLYMORPHISM

2.9 SELF-ASSESSMENT ...uieiiettererieteereseesesesessessesessesssessssssesssessesessssssssssessesesensssssessnsssesesssssesesesssssensassesssnssnsssanens 23
ADA INTRODUCTION: PART 1

31 A FIRST ADA PROGRAM ...ttt tett s tsseses e esesesasseesessssssesesssssssssssssensssssessnsssssssssnsesesensssnsesssssnssssssnsesssenses 25

3.2 THE CASE OF IDENTIFIERS IN A PROGRAMc.ootitiirerteeseseseeseesessssesssesesssessssssssessssssenssessessssssssssssssessssnses 26

33 FORMAT OF AN ADA PROGRAM
331 Variable names.........ccocenieenienen.

332 COMMIMIENES ...ttt bbbttt bbb bbbk ek bbb bbb bbb bbbt bbb bbb bbb bbb bbb b bbb ebebebenas
34 A LARGER A DA PROGRAM ...cutotitrteuttsirtsesesteesesesassesssesssssssssssesssssssssssnsssssesssssssssssssssesassnssessesssssssessssssessssnses
35 REPETITION: WHI LE........cioireeteiereeieesesiressenesestessesessssesessesesessassesssessssssessssesessnsssssenssessesessnsssssenssssnsesssensesaseses
3.6 I I O I8 U
3.7 OTHER REPETITION CONSTRUCTScitttitrerteeerereesesesesseseesessssssessssssessssssesssssssssssssssssssssssssensasssessssssssesanens 29

O M A Smith - May not be reproduced without permission

Contents \Y}

371 O RS R R R Rt 29
372 oo o 1PV OT SO TTT T TO 30
3.8 OTHER SELECTION CONSTRUCTScooititrtriseseresesesesesesesesesesssssesesssesesssssssessssssssssssssssssssssssssssssssssssssnsssssssssnsas 31
381 CASE....eririrririr i T 31
3.9 INPUT AND OUTPUT ...ocuitiiiiiteieieieieieietetese et se i bbb bbb bbb bbb sebebebesebebebesebebebesebebebebebebebebebebebebebebebesesebesesaes 32
310 ACCESSTO COMMAND LINEARGUMENTS.......ccettturieieteinieieieieieie it ssas bbb ss bbb sesaes 33
3101 PULtNG it All LOGEINEYceiiecieeee e 34
311 A BETTER CAT PROGRAMooiiiiiiitcieieisie ettt bbb bbb bbb bbb bbb bbb bbb bbb bbb b enns 34
3111 Puttingit all together
312 CHARACTERSINADA.....
313 SELF-ASSESSMENT
B4 EXERCISES...... oottt se bbbt a bbb bbb bbb R bbb bbb b e R e bbb b e bbb b e b bbb e bbb bbb bbbt e b nes

ADA INTRODUCTION: PART 2
4.1 INTRODUGCTION ..ottt sissss st sse s s bbb bbb

4.2 THE TYPE FLOAT ..ottt
421 Other Integer and Float data types
4.3 NEW DATA TYPES ...
431 TYPE CONMVET SIONS....evrieiriieisteeesst et s s s bR bbbt
432 UNIVESAl INEEJET ..ottt s
433 CONSLANE AECI AN BLIONS.......cecvreecrieeireieeeie e bbbt
4.4 MODIFIED COUNTDOWN PROGRAMcocutuiutieteueieteieieieieieseseiese st seasssbe s bbb sessbesesssesesesesesesesesssesessseseseses
4.5 INPUT AND OUTPUT INADA ...ttt
4.6 THE PACKAGE ADA. FLOAT_TEXT_| O
46.1 Output of floating point NUMDErS..........ccoveerrecrreccrnenns
4.6.2 Input of floating POINE NUMDEL'S ... e
4.7 THE PACKAGE ADA. | NTEGER _TEXT_| Ottt
4.7.1 OUutput Of INTEJEN NUMDETS.......coieiiciicreee e b
4.7.2 [NPUL Of INEEJEI NUIMDELS......couveecrcerreee et
4.8 CONVERSION BETWEEN FLQOAT AND | NTEGERTYPES
4.9 TYPE SAFETY IN A PROGRAM
410 SUBTYPES......cooovrererererererereresesesenenes

4.00.1 TYPESVS. SUDLYPESvuivrireierieer ettt s st bbb
411 MOREON TYPESAND SUBTYPES......coo ettt bbb bbb bbb bbbt b s

4111 Root_Integer and ROOL_REALcccoreuririririerreeieiseseeie ettt

4112 Typedeclarations: root tYPE OF LYPE......cveirirerireeeee e

4113 Arithmetic with types and SUDtYpesS.........c.cccveerrirreneene.

4114 WaINING oot ssssseees

4115 Constrained and unconstrained types

4.11.6 Implementation OPLiMIZALIONS.........ccieeieeerieeer e
412 COMPILE-TIME AND RUN-TIME CHECKS......coeoseteteirieieteirieiete ettt ss bbbt

4,121 SubtypesNat Ur al andPOSI 11 VE ettt aes
413 EINUMERATIONS. ..ottt ittt se et e bbb et bbb b bbb b e s b e ke b e b e b e b e b e b e b b e b e b e b e b e b e b ebebebebebebebebebebebebebebebenes

4131 Enumeration values..........ccccuneeee.

4132 Theattributes' Val and' Pos....
414 THESCALARTYPEHIERARCHY.........

4141 TREINDUITT TYPES.....ceciieiiteeer et
415 ARITHMETIC OPERATORS.......cctttruetetetstetetetetstetetsaetetssssssesesssssesesesetesesesebesesesebesesesesesesesesesesesesesesesasesesesesesesns

4151 EXPONENLIALIONvieiieiireeereees ettt s b e

4152 MonadiC arithmetiC OPEIALOIScvcuiecerieeeieeeri et
416 MEMBERSHIP OPERATORS........cotirieiririreetsisesesssesesesesesesesssssesesssssesesssssenens

417 USEOFTYPESAND SUBTYPESWITH MEMBERSHIP OPERATOR
418 RELATIONAL OPERATORS.......ccestrtrteriererieesessssssesesessesssessssesssessesssessssessnens
4, 18.1 BOOI AN OPEIALOrS ...ttt ettt bbb s s bbbttt en st b s e tee
4,182 MoNadiC BOOI AN OPEIALOrS......ccccuveeererecicie et ss s bbb es b b s s nntees
419 BITWISE OPERATORS......ooueeeeeeeeesseeeesesseseesessesessesesssssssssssssss s s sessssssss et ssssssssssssssssssessssesssesssssssssssssessses
420 SELF-ASSESSMENTcuoiiiiitetiiririeteneseseesesesestesesesestesesessssesesesessesesessssesesessesasensssssensessesssessssesensnsssnsenssensesssessnsesen

Vi Contents

421 EXERCISES.....ooiciiiiiitsii i bbb b bR 59

5 PROCEDURES AND FUNCTIONS

51 INTRODUGCTION ...octititiieteieieieteieiete ettt et bbb bbb bbbt bbb bbb bbb bbbk bbb bbb bbb b e bbbt be bbbttt bes

5.2 FUNGCTIONSttt bbb bbb bbb bbb bbbk bbb bbb bbb bbbk bbbk bbb bbbt
521 LOCAI VAITADIES.......ceteeieeteee ettt
522 Separate compilation of fUNCLIONS........cccoveevvncee e

53 PROCEDURES.........cceoiiteiiieieiisie ittt bsss bbbt ssss s bennes
531 Separate compilation of procedures...........oevvneereresenneseeenenens

5.4 FORMAL AND ACTUAL PARAMETERS.......ccoiitririetieie ittt bbb

55 MODES OF A PARAMETER TO A FUNCTION OR PROCEDURE
55.1 Example of modei n out

55.2 PULLING it @1 LOGEINEL ...ttt

55.3 Summary of access to fOrmal ParamMELErS........ovicererrrrreeer e
5.6 RECURSION ..ottt asss bbbttt bbb esssssesesens

56.1 The procedure W i t e_Nat ur al

5.6.2 Putting it all tOQELNEr ...
5.7 OVERLOADING OF FUNCTIONS.......oitrirtrisistsesesesesesesesesesesesesssesesesssesesssesssesesssssssssssssessssssssssssssssssssssssssssssnsnens
5.8 DIFFERENT NUMBER OF PARAMETERS.......cccostiiiieiieiisis ettt bbbttt

5.9 DEFAULT VALUESAND NAMED PARAMETERS
5.9.1 Putting it all together

510 SELF-ASSESSMENT ...ooovtiiiiriririririsisisesesis et iseses et sses sttt ssssssss s sssssssesens

DAL EXERCISES.....ciiirieieeereenesessessesessssessessessssssse s sssssssssssssssssssssssssssss s s ssssssssssssssssssssasssssssssssssasssssessesssssssssas

PACKAGES AS CL ASSES
6.1 INTRODUCTION ...ttt bbb b b bbb

6.2 OBJECTS, MESSAGESAND METHODS
6.3 OBJECTS, MESSAGESAND METHODSIN ADA
6.3.1 AN 0bject fOr @ DaNK @CCOUNLcourereeer et snses
6.3.2 The procedure St at enent

6.3.3 L Do A= LI (0T =
6.34 COMPONENES OF @ PACKAGE.veeereeirerereeerisesieis st sssssse st sss st sesssssses st ssesesnsesessssssssenssnsessns
6.3.5 Specification of the package.........ccooverrereennncss s
6.3.6 A class diagram showing @ Class.........ccceevereereererenseeerenessssesesesssnenns
6.3.7 Representation of the balance of the account
6.3.8 Implementation Of the PACKAGE. ... snsen
6.3.9 L= 011 0] o PR
6.4 THE PACKAGE ASSEEN BY A USER.....ccoivvriririririsisiseses s isesesisiesnens
6.5 THE PACKAGE AS SEEN BY AN IMPLEMENTOR
6.6 THE CLASS. ...ttt bbbttt
6.7 CLAUSES W THAND USE......ccotitrirteerereriesiesesieseessssssesesessesesessssssssessssssensssssessssssssssssssesssssssssensasssessssssnsesanens
6.7.1 TO USE OF NOL 1O USE TR US @ ClAUSE ...ttt ss s nnse s
6.7.2 The package St andar d
6.7.3 Positioning of wi t h anduse in apackage declaration ...
6.74 Conflict iINNAMES TN @ PACKAGEc.cuvereeerirereeir ettt ssssessss et s s sesssssssssssesssssessns
6.8 MUTATORSAND INSPECTORS......cccoeuririeieiniieieiisisisieisssistssssssssssssessenens
6.9 B I e 3 I I
6.9.1 Typelimted Privat @ .
6.10 INITIALIZING AN OBJECT AT DECLARATION TIME.....icstnttiiiiieniseneesesessssesesssssesessssssesssssessssssasnes
6.10.1 By discriminant
6.10.2 Restrictions.........ccce....
6.10.3 Byassignment...............
6.10.4 RESLIICHIONS.....ceecereeericereie it
6.11 A PERSONAL ACCOUNT MANAGER ..ottt se s ss s sesessssnesssssesssssssnes
B.12 CLASS TUL oooieeiieeieerestsesesessessssesssessssessssesssssssssssesssssssasssssssssssssessssessssessssassssassssssssssnssssnssssnssssnsssssssssessssesnssenes
6.13 SELF-ASSESSMENT
B.14 EXERCISES......ceoituretureeereaeestieastseesiesssssessbsess b sesessesessess sttt s e se b ee s bbb bbbt

O M A Smith - May not be reproduced without permission

Contents il

7 DATA STRUCTURES

7.1 THE RECORD STRUGCTURE ..ottt sttt sttt ettt
7.2 OPERATIONSON A DATA STRUGCTUREcootiiririrtrireresese sttt sesese e sesssssssessssssssssssssssssssssssssssnsnens

721 Other operations allowed 0N data StrUCTUNES........c..ccuerieeieeeierses e sesessesenns
7.3 NESTED RECORD STRUCTURES.........ccccoteeireeereeesenes

7.4 DISCRIMINANTS TO RECORDS
75 DEFAULT VALUESTO A DISCRIMINANT
75.1 Constrained vs. unconstraiNed diSCriMINANES.cccoiiieiieiiiieseee s r e enas

75.2 ReStrictioNS 0N @ iSCITMINGANT........c.ciiiiieeeeecese et b e st b e se b b e s be e sssbasnanas
7.6 VARIANT RECORDS ... oo cteeeeeeeteeeet et settsetesetsssts st ssstsssessstsssesasssasesasssssesassasesssssasessssssssasesasesssesasesseessssssesssesasesnns
7.7 LIMITED RECORDS ...ttt ete st ste st e et e stesa st sstesasssesessssseesasasssessesasesssesasessesassssesasasssesasaaseessesesesnsessesares

7.8 DATA STRUCTURE VS. CLASS
7.9 SELF-ASSESSMENT
710 EXERCISES.....cititteeteeeteees ettt sttt ettt ettt ettt

ARRAYS
8.1 ARRAYSASCONTAINER OBJIECTS......coirererirererereresesesesesesesesesesssesesssesesesesssesesesssesesesssssesesssssesssssssesssssseneaes 102

8.2 ATTRIBUTESOF AN ARRAY
8.3 A HISTOGRAMcovrrrirrrerererenens
831 Putting it all together ...
8.4 THE GAME OF NOUGHTS AND CROSSES
841 TRECIASS BOAI ...ttt
84.2 Implementation Of the GAME ...
8.4.3 DisplayiNng thE BOAT O ...t bbb bbb
844 TRECIASS BOAI ...ttt
845 Putting it all together
8.5 MULTIDIMENSIONAL ARRAYS
851 An alter native way of declaring multidimensional arrays
852 Attributes of MultidimenSiONaAl ArTaAYS.........oerenieeee s
8.6 INITIALIZING AN ARRAY ..ottt ieseieie s ssie s bbb bbb bbb sessbesesassbesesessbesesabebesesebebebesebebenesesesenns
8.6.1 Multidimensional INitialiZAtIONS.......c..cceieere e
8.7 UNCONSTRAINED ARRAY'S
871 Sicesof anarray.......coveeen.
8.7.2 Putting it all together
8.8 STRINGS......ooerreeerereeeeeeene
8.9 DY NAMIC ARRAY S ..ottt ettt i et i bbb b s bbb s e b b e b s e b b e b e R e b e b e R e R e b e b e b e Re b e b e R e R e b e b e b e b e b e b e be s e b b nns
891 PULtiNG T All TOGELNENoieee e
810 A NAMEAND ADDRESS CLASS ..o iiitrtrtseriresesesesesesesesesesssesesssssesesssssesesssssesesssssssesssssssesssssssesssssssesssssssessaes
8.10.1 PULtING it All LOGELNEcecvieiiieer e
811 ANELECTRONICPIGGY BANK....
812 SELF-ASSESSMENT

813 EXERCISES.....coi sttt sttt e 44 E £ £ £ e Rt

CASE STUDY: DESIGN OF A GAME

9.1 REVERSI ...ttt b bbb bbb bbb bbb s bbb R b e R bbb R AR b e R e R e R e b b e R e b b e R e R b bbb e b s b b nns
911 A Programto PlAY FEVEISi......ccicricrer et

9.2 ANALYSISAND DESIGN OF THE PROBLEM

9.3 CLASS DIAGRAM ...ttt

9.4 SPECIFICATION OF THE ADA CLASSES........ccconeeneienenes

9.5 IMPLEMENTATION OF THE MAIN CLASS GAME ..ottt 132
951 RUNNING ThE PIrOGIAML......cecvieeierreee e 133
952 Example Of 8 tyPiCal QAME ..o 133

9.6 IMPLEMENTATION OF THE OTHER CLASSESciiiereirieieieieieeisis e 135

9.7 SELF-ASSESSMENT

9.8 EXERCISES......cooeiitcieieieteieieie ettt b b b s e bR bbb R bbb R R b e bR e AR b e b e bbb bbb e bbb nns

10 INHERITANCE

viii Contents

0.1 INTRODUGCTION ...oosiiiiiririresisisesesesesesestsesesesssssesesssssessesssssssesssssesssesssssssssssssesssnsns
102 TAGGED TYPES......ccvcvvunene

10.2.1 Terminology
10.3 THE CLASS| NTEREST ACCOUNTceovrerterrerereeseeresessenesessessssessssssessesenen

0 T R 1= o o 11 o] o T | TR
104 VISIBILITY RULES (NORMAL INHERITANCE)......cccceisrurmerereresssereresssssssessssssssessssssssssssssessssssssssesesssssessens
105 CONVERTING A DERIVED CLASSTO A BASE CLASS
10.6 ABSTRACT CLASS ...ttt senees

10.6.1 Putting it all together

10.6.2 Visibility of Dase Class MELNOUS..........ccccrrrrrrrrce st n e ssesenssnses
10.7 MULTIPLE INHERITANGCE......ciisetrtristrtstsiseseststseststsssestsssssestsbsasasts st sas sttt stssssss st tsssastesssssetssesssssssssssssesssnens
10.7.1 Putting it all together

10.8 INITIALIZATION AND FINALIZATION ..cccttimreererreresteersereesessesesssessssesssssssesssssssessssssssesssssesssssssssssessassesssnens

0 I R 1 0070 =" 01077 L4 o o TR
10.8.2 Putting it all together
0 C T T VL= T o o T
109 HIDING THEBASE CLASSMETHODS
10.9.1 Visibility rules (Hidden Dase Class)cccvrrirnnininsesnesesessessssssisesesssssessssssssssesssssssssssssssessssess
10.9.2 PULLING it @l TOGELNEL ..ottt snasennsenes
10.10 SELF-ASSESSMENT
L0.11 EXERCISES....coiiieeeeretseesetsetsesseseesessesssssse s ssssssssssessessssssssssssssessesssssssessssssssssssesssssesssssssssssessessssnssnssssnees

11 CHILD LIBRARIES

111 INTRODUGCTION ...oiriiiiiiirieesisisesesisisesestsesesesssssesesssssessesssssssesssssesssesssssssssssesssssnsns
11.1.1 Putting it all together
T 2 V= T o o T

112 VISIBILITY RULESOF A CHILD PACKAGE
11.3 PRIVATE CHILD oottt esss e

11.3.1 Visibility rules of a private Child PACKagE..........cccverrirreerirese s ssessessesesssnens 169
114 CHILD PACKAGESVS. INHERITANCE
115 SELF-ASSESSMENT ..ootiiiietiiriresesisisesestsesestsesesesesssssestsssssessssssssssssssssssssesssssssssssssssssssssssesssssesssssssssesssssssssssssesssnss
1116 EXERCISES.....coeieirereeereeseesetsessesseseesessssssssssssssessssssssssessessssssssssssssessesssssssessesssssssssssesssssesssssssssessssnssnssnssssnees

12 DEFINING NEW OPERATORS

121 DEFINING OPERATORS IN ADA ..ottt sttt sttt st et bttt bt sttt st sttt st bsbssssssesnsnens
122 A RATIONAL ARITHMETIC PACKAGE.......cocsirirtririririsisisesis e tsssas s tsssests st ssssas sttt sssssssssssssnens
12.2.1 Ada specification Of the PACKAGE.........cccrrrererrerirerressee st sessessasenssnsns
12.2.2 Adaimplementation of the package........c.ccoueevrerrererrennsereressneninens
123 A BOUNDED STRING CLASS ..ot s sesesesesesesesesesesenes
1231 Overloading = and/ = ...
12.3.2 Specification of the classBounded_St ri ng
12.3.3 PULLING it @l LOGELNEL ...t nasnnnsenes
12.3.4 Ada. Strings. Bounded astandard library
G T T V1= X =T Y o TSP
124 SELF-ASSESSMENT ..ootiisietitriresesisisesestsesesesssesesesssssesssssssessssssssssssssssssssssssssssssssssesssssesssssssssesssssssssesssssssssssssssssnsns
12,5 EXERCISES... ..ottt sisessi st ses e sss e es e bbb e e b bbbt

13

131 THEEXCEPTION MECHANISM ...oooiiiirieirisirisisisisesistseseststssseststsssssssssssassnss
132 RAISING AN EXCEPTION ...ootiiiiririsisisereseseseseststsesestsssessesssssssssssssssssssssssesssnss
13.3 HANDLINGANY EXCEPTION ...cccovriririririririnesesesesesesesesesesesesesesesesesesesenes
134 THE CAT PROGRAM REVISITED ...ooccoeoiririrererereessesesesresesessessnesesesssesessenes
135 A STACK ettt ettt bbbttt
G R 01T o L= oo g TR
13.5.2 Implementation Of the SLACKcccoviirrrerece s sasennsenes
136 SELF-ASSESSMENT

13,7 EXERCISES......ooiiii bbb bbb b b

O M A Smith - May not be reproduced without permission

Contents IX

14 GENERICS

141 GENERIC FUNCTIONSAND PROCEDURES.........ccostetetriresistsisesesisssesesisssesesssssesssssssessssssssssssssssssssssssssesssnens
14.1.1 Advantages and disadvantages Of GENEIIC UNITS.......cvererieemirnenineesrneeerneee s ssesessesssseenes
142 SPECIFICATION OF GENERIC COMPONENTcociiiirtrtriresietsesesestsssesssssesesssssssesssssssessssssssssssesssssssssssssssssnsns
143 GENERIC STACK ..ottt
14.3.1 Putting it all together
14.3.2 Implementation techniques for a generic package
144 GENERIC FORMAL SUBPROGRAMS........cooitttitrirtststsietstsesestsssasesesssssesssssssessssssssssssssssssssssssssssesssssssssssssssssnsns

14.4.1 Example of the use of the generic procedure G_3Or AEr ...
s V1110 0°= [OOSR
@ | = I VRS R
1451 EffiCIENCY oot
146 A GENERIC PROCEDURE TO SORT DATA
14.6.1 Putting itall togetheroovvveinecnicneeeeeneens
14.6.2 SOMTING FECOMTUS. ..ouiurieeiieeirierete ettt bbb
14.7 GENERIC CHILD LIBRARY ...uttiirttirirtetetnesesiesesestssssesesassessesssss e sessesessssssssesssessessnsssssessnsssssesensssssessnsssssesssssens
14.7.1 PULtiNG it @ll TOJELNEN ..ottt
14.8 INHERITING FROM A GENERIC CLASS ..ottt st e esasseseses e sessesassssssssesssessessnessssessesns

14.8.1 Puttingit all together
149 SELF-ASSESSMENT
14.10 EXERCISES

15 DYNAMIC MEMORY ALLOCATION

151 ACCESSVALUES ...ttt sttt sttt st s e e b s s e e £ b s s e e e b e 8 se b b e e ee e b b e A e e e b b e e ee e b b e s eb et et ebnb et et esneebetennnas 209
15.1.1 Accessto an ObJjeCt Via itS @CCESS VAIUE..........cccuecrrierrieirieenie st sessneeees 210
15.1.2 Lvaluesand rvalues
15.1.3 Read ONlY GCCESS.......occeuriereriereirrisineeeieeessress e rseseneans

152 DYNAMICALLOCATION OF STORAGE
1521 Problemswith dynamically allocated StOrage.........cccverreeieemiineinesineeneee s 215

153 RETURNINGDYNAMICALLY ALLOCATED STORAGEccsititierertririresesisisesisiseses s sssssses e 215
15.3.1 Summary: access all ,access COoNStant , ACCESS . 216

154 USE OF DY NAMIC STORAGEcoeuiiiririeisirereststseststseses et seses s sss st s et st ss e s s s s st sssssbessssssbsbesesssssesssssesssnsas
1541 Putting it all tOGEtNEYcovvvrierriereee e

155 HIDING THE STRUCTURE OF AN OBJECT (OPAQUETY PE)

1551 Putting it all tOGEtNEYcocvvreeeiriereeree e
1552 Hidden vs. ViSible StOrage in @ ClasS.........cuercrieeinieneenei s sesssseenes

156 ACCESSVALUE OF A FUNCTIONootiiiitiirerestsesesestsssesesssesesesssssssssssssesssssssessssssssssssssssssssssssssssesssssssssssssesssnsns

15.6.1 PULtiNG it @ll TOJELNEN ..ot

157 ATTRIBUTES' ACCESS AND '"UNCHECKED ACCESS
158 SELF-ASSESSMENT

159 EXERCISES......ooiiiiciirisiei st bbb
16 POLYMORPHISM

16.1 ROOMSIN A BUILDING......citittitiireeestsireststsesesestsesesestsssesssssssesesssssesesssssesssssssessssssssssssssssssesssssssssesssssssesssssssssnsns 227
16.1.1 DYNaMIC DINAING ...cevieeiieeiieiiri ettt 228
162 A PROGRAM TOMAINTAIN DETAILSABOUT A BUILDING.......cccoirrereririrerinisesesissesesesssesesesssesessssseens 228
16.2.1 Puttingit all together
16.3 RUN-TIME DISPATCHcoiiieicrieieieieesieie e
164 HETEROGENEOUS COLLECTIONSOF OBJECTS
16.4.1 Anarray asaheterogeneous COIECHION. ..o
16.4.2 AdditionstotheclassOf fi Ce and ROOML ... een
165 A BUILDING INFORMATION PROGRAMcocsiiiiiririeteisisesistsesesestsssesssssssessnsns
16.5.1 PULtiNG it @ll TOJELNENoieeiiirirre e
166 FULLY QUALIFIED NAMESAND POLYMORPHISM
16,7 PROGRAM MAINTENANCE AND POLYMORPHISM
168 DOWNCASTING

X Contents

16.8.1 Converting a base classto a derived ClasS.........o e ssesssssesesssnsns
169 THE OBSERVE-OBSERVER PATTERN......cccocvvrnnerererenessesesesesesesesesenens

16.9.1 The Observer’sresponsibilities......c.cocrrereenreneeeenessseresesseeeenens

16.9.2 Theresponsibilities of the observable object........c.cccovvvvvververnnne.

16.9.3 PULtING it @Il LOGELNELeeeceeeeseceete et nasennannas
16.10 USING THE OBSERVE-OBSERVER PATTERNccoitiiiititrieieinirieisie sttt tsss sttt ssssssssssnens

16.10.1 The observed board object

16.10.2 An observer for the ClasS BOAT O ...t sss s sesesssssesenees
16.10.3 The driver code for the program of nought and CrOSSES.........cccvrererereennenseenrenss s
16.11 SELF-ASSESSMENT ...eiceiirerteeesisesseseses e seeses e seste s sases e e sessese s sestese e sssssesessesasensssnsansssnsessnssensensnsssnsnsen
16.12 EXERCISES......tueutteeeteietseesseetstsesstse sttt sess b ese s sa s s e bbb bbbttt

17 CONTAINERS

L17.1 LIST OBUIECT .oieeeierirerestsererestsesesesssssesssssesssssssssessssssssssssssssssssssssssssssssssssesssssssesssssssssssssssesssstesssesesesesssssssssnsssesssnss
0 T R I E= V= T - YT

172 METHODSIMPLEMENTED IN A LIST .ooiirrrrrerereseresesesesesesesesesesesesens
17.2.1 EXGMPIE OF USB...cuivciieiereeerereseeiseseses s esessssesesessss et ssasssssssessssssssessssssssessssssssensanees

17.3 SPECIFICATION AND IMPLEMENTATION OF THE LIST CONTAINER
17.3. 1 TREIISE IO ALON ...ttt bbbt
17.3.2 Relationship between alist and itsiterator..........ccceovveeerererenenenens

174 LIMITATIONSOF THELIST IMPLEMENTATION

175 REFERENCE COUNTING......cocosrriririririsesesesesesese s s sesesesesesesesesesenes

176 IMPLEMENTATION OF A REFERENCE COUNTING SCHEMEccocovrrriririririririrs e
0 R Vo = R L= o o= 1 o) o TR
17.6.2 Adaimplementation..........ccocerrernnirenssenesenseesse s esessssesesessssssenens
17.6.3 Putting it all together

L17.7 A SET ettt ettt
17.7.1 Putting it all together

17.8 SELF-ASSESSMENT ..ooviisieiririrertsisiseststsesesesssesesesssssesssssssessesssstesssssesssesssssssssssssesssnss
17,9 EXERCISES.....coieieeeeeereereesetsetsetsssseseesessssssssssssssessssssssssessessssssssssssssessessssssssssesssssssssssesssssesssssssssssessssnssnssnssssnees
18 INPUT AND OUTPUT
181 THEINPUT AND OQUTPUT MECHANISM ...coouiiiiriririririririsisisisisiseses st tsssestsssssssssssssassssssssstssssssssssssssssssssnens 273
18.1.1 Putting it all tOGELNEYcvveeeereecee s
182 READINGAND WRITING TOFILES
18.3 READING AND WRITING BINARY DATA ..o irrtrtririrtststsesisisises sttt sttt sas sttt sssssssssesssnens

184 SWITCHING THE DEFAULT INPUT AND OUTPUT STREAMS
18.4.1 Puttingit all together

185 SELF-ASSESSMENT
18.6 EXERCISES......oieieeurereeereeseesetsessssseseesessssssssssssssessssssssssessessssssssssssssessesssssssessessessssssssesssssessssssssssessssnssnssnssssnees
19 PERSISTENCE
191 A PERSISTENT INDEXED COLLECTIONcceisririririreresireresistsssesesssssesesssssesessnens 280
19.1.1 Putting it all tOQELNELvveeeereecee e
19.1.2 Setting up the persistent object
S I I 1 3 Y

20.1 THETASK MECHANISM ..ottt sesssr e sessessssssneneasens

20.1.1 PUtiNg it @ll tOGELNEN ...ttt a st ae s e s
20.1.2 TaSK FENAEZVOUS........coriueerieeerrieeeieeeisese st sssenns
20.1.3 Thetask Simplementation..........cccveerrereereressesnenessssesesesssssesennens
20.2 PARAMETERSTOA TASK TYPE....co e ese s seesesassesesessesenes
20.2.1 PUtiNG It @Il LOGELNEN ...ttt a sttt nae s s s
20.3 MUTUAL EXCLUSION AND CRITICAL SECTIONScoeoiieeeererereeteesesesseesesesesessssssssesesssssnssessessnsssssssenens
204 PROTECTED TYPE....coiscceseresteinestssesestsssesesessessesssssssssssssessnsssssenssessessnen
205 |IMPLEMENTATION

O M A Smith - May not be reproduced without permission

Contents Xi

20.5.1 Barrier condition entry
20.5.2 Puttingit all together
20.8 DELAY .ottt st
20.7 CHOICE OF ACCEPTS......ccttttttteettene sttt sttt s sttt sttt sttt sttt sttt
20.7.1 ACCEPL AITEINALIVEcoeeiececieee ettt
20.7.2 ACCEPL LIME-OUL......ooveeieerieerriemereeer e
20.8 ALTERNATIVESTOA TASK TYPE....ooeeereeereeesee s
20.8.1 Aspart Of 8 Package.........ccoueremirreerneerrierrese e
20.8.2 ASPArt Of @ Program UNIT ...t ssee s st ses s s essssessssenas
20.9 SELF-ASSESSMENT ..ottt ettt sttt ettt sttt ettt ettt ettt
20.10 EXERCISES ...ttt e £ e £ £ £ £ e £ e e b £ e e e b b e A e e b b e b eE e b e b s ee et et esnb et b nnneas

21 SYSTEM PROGRAMMING

211 REPRESENTATION CLAUSE......ooitirrirteiitrireee st sesie e sas e e et sssesesas e s sesssse e sessessnessssssansssssesenssessessnsssesessnens
2111 PULtiNg it All TOGEINEY ..ot
21.2 BINDING AN OBJECT TO A SPECIFIC ADDRESS
21.2.1 ACCESSTO INAIVIAUAD DITS.....coiiieieeiiricieirireie sttt
2013 SELF-ASSESSMENT ...oiitiiiririeteseseseesesesestesesessseesesesessesesesessesesessesasesessssesessssssenssensesenssssesensssssesenssensessnsssesesenens
214 EXERCISES......cotciotrieteriresteuieseseesesesessesesesestesssessssssesesessesensssssensssssesasessssssessnsssnsenssensesenssnsesensssssesenssessesssssesessnens

22 A TEXT USER INTERFACE

221 SPECIFICATION ..ot seeeeteseete s te e te e teste e e teseeseste e ebeseesesbesessestese et eseasesaseesesseseaseseesensesesseseesenseseseenssseannesean
222 APl FOR TUL ottt bbbt et bbb sttt b et s bbb es s et et s s anses s st
2221 To setup and close down the TUI
22.2.2 Window API calls
22.2.3 Dialog API CallS.....cciiiiciiicieieee s
2224 UserinteraCtion With the TUI ... s

22,25 ClASSES USEU......ueuiiucieireeeeieirestisie ettt es s st s b st £ st £ e e e b re bbb e st ne b bt en
22.3 AN EXAMPLE PROGRAM USING THE TUI

2231 HOW it @l FILSTOGELNEN ..ottt

2232 PULtING It Al LOGEINEY ..ot
224 THEMENU SYSTEM ..oootiiiiirieiereststetene s s esesse s e e e sas e e st a e se st sa e e ssesasesetesansssssesanensssasenssensensnsssesesenens
225 NOUGHTSAND CROSSESPROGRAMocvriitririrteinisesiesesessssssesesessessssssssesssessessssssssesessssssesensssssessssssessssnens

2251 TheclassBoar d

22.5.2 Package PacCK PrOgr @M.ttt bttt tn s

2253 Puttingit all together
226 SELF-ASSESSMENT
227 EXERCISES.....ciotitteeiteetseests ettt ettt sttt ettt ettt

23 TUI: THE IMPLEMENTATION

231 OVERVIEW OF THE TUI ettt s et s e st ese e nassesa e snsnsnnens
2311 Sructur@ of the TUL ...t

232 IMPLEMENTATION OF THE TUI ...ooioiieeereeeree e
2321 Constantsused iNthe TUL ...
2322 RAW INPUE BN OULPULooveveeiieenereeersees st essssenas
23.2.3 MaAcChing-dePendent [/O.........ciueuiremnerrieriecirie et
2324 TheclassScreen

23.3 THE CLASS ROOT_W NDOW....cucitrtruereerestesieseseesesessssesesesessessssssssssessssssesessssssenssessessssssssesessssssesensssssesssssesasenens 334

234 THE CLASSES| NPUT_MANAGERAND W NDOW CONTROLc.civieueinerenieeresieseesesessesesesssseesessesssssssssseens 335
23.4.1 Specification of theclass| nput _manager ...

23.42 Specification of theclassW ndow_cont r olcceveeeceienes

23.4.3 Implementation of theclass| nput _nmanager

23.4.4 Implementation of the classW ndow_cont r ol
235 OVERLAPPINGWINDOWS.....c.cotrrteeeeririeinesesessesesesseenesastesssesssssssssssssessssssssenssessessssssssesessssssesensssssesssssessssens
23.6 THE CLASS W NDOW....cosuiirirerieinisisieesesesssesessssesesessssssesesessessssssssenssessesases

23.6.1 Application API

23.6.2 Window system API

xii Contents

23.6.3 The specification for the classW ndow

23.6.4 Implementation of the class W NAOW........ccccoveeverervenncenenenssininennens
237 THE CLASSDI ALGG....ciciiiiiiiirinesisissssssss s sssssssssssssssens
23.7.1 Implementation of the classDi @l 0Q....cccoccevrerrrrrenrcerneserrennens

23,8 THE CLASS MENU...c.coiiiiiiieeieeneess e se ettt et sttt st sttt sttt
23.8.1 Implementation Of the CIASS IMBNU ..o sse st sss e nsesnsen
239 THE CLASS MENU_TI TLE ..ottt ssssssens
23.9.1 Implementation of theclassMenU_tit] €..coevvrccvneercnvennnns
23.10 SELF-ASSESSMENT ..ottt ssssessssssssssssssssssssssssssesnens
23.11 EXERCISES

24 SCOPE OF DECLARED OBJECTS

241 INESTED PROCEDURES.......cctctrttiiiisisesestssesesssssesssesssesssssssssssssssesssssssssssssssssssssessssssssnssssssesssssesenssssesensssssnenes
24.1.1 Advantages of using nested procedures
24.1.2 Introducing a new lexical level in a procedure or function
e T o o = T IV =] o1 /2O
24.1.4 Consequences of lexical levels

242 SELF-ASSESSMENT

25 MIXED LANGUAGE PROGRAMMING

251 LINKING TO OTHER CODE.......cctcttiiieinieenessssesssssssesssssssssssssssesssesesssssssssssssenenes
252 SELECTED TYPES AND FUNCTIONS FROM | NTERFACES. C
25.2.1 Integer, character and floating point types
2522 CSringtype

25.2.3 Selected fUNCLIONS ..ottt nens
253 AN ADA PROGRAM CALLING ACFUNCTION
25.3.1 ANOther €XamPle. ..ot essessssesssnens

254 AN ADA PACKAGE IN C..ooriiiiiiii i s b bbb
255 LINKING TO FORTRANAND COBOL CODE

APPENDIX A: THE MAIN LANGUAGE FEATURES OF ADA 95

SIMPLE OBJECT DECLARATIONS......cootteteirieiei sttt sesnssssssesnsnensens 366
ARRAY DECLARATION ..ottt b bbb r e s 366
TYPE AND SUBTYPE DECLARATIONS.......cootiiieiitieeirisiees st ssssse s 366

ENUMERATION DECLARATION
SIMPLE STATEMENTS

B.1 RESERVED WORDSAND OPERATORS IN ADA G5ttt st sss s ssssbesbesressesssssssssesaestesresassseene 371
B.1.1 Reserved words
B.1.2 Operators

B.2ATTRIBUTESOF OBIECTSAND TYPES ..ottt ettt sssas sttt tssssssssssssssssnsnens 371
B.2.1 IS 0= L= o o] = o (=TT 371
B.2.2 Array ODJECIS NG LYPES......vrecieerecrieiresssie sttt s s s s s st n st s e anan s s e nees 371

O M A Smith - May not be reproduced without permission

Contents xiil

B.2.3 Scalar ODJECLS AN LYPESc.vceicrrieeitieer e
B.24 Discrete Objects........coouernerennee.

B.25 Task objects and types
B.2.6 Floating point objects and types

B.3 LITERALSIN ADA ...ttt sttt ettt s e e b e e £ £ 8 e e e e b8 s e £ b e e ee e A b e A e b e b b e e eE e b b e e et eb e b e b nb et et s neebesennnas

B.4 OPERATORS IN ADA 5. coeeeeieeteiriseeis sttt seses st st ss et s s e b s sseee b s s see s e b s s seseebeseeebebesee et e b esne et et esnsebebesnsebesesneas
B.4.1 Priority of operatorsfromhigh tO IOW...........cceiiiicc e

B.5 ADA TYPE HIERARGCHY w....ooititiiiestsisirests sttt tseseses st sesestss st s s et s s s s s e s et s ssseee b e s eeeb et esseebe b et et ebebesesesabesssesesesnsas

B.6 IMPLEMENTATION REQUIREMENTS OF STANDARD TYPES......

B.7 EXCEPTIONS........coceereeeieieiieienens
B.7.1 Pre-defined exceptions............
B.7.2 [7O EXCEPLIONS.......cecvieeetieetieie ettt s

B.8 ADA 95 THE STRUGCTUREocsttitrtrtrisireststsiseseststsesestsssessssss et ssssssss s s sesssssssesssssssssssssssessesssssesssesesssssesssssesssnsns

B.9 SOURCES OF INFORMATIONcoetitiirtetrtsesesesesesesesssssesssssssesssssssessesssssssssesesssssssssssesssnsns
B.8.1 Copies Of the Ada 95 COMPITET ...
B.8.2 Ada information on the World Wide Web
B.8.3 News groups.
B.84 CD ROMS.....ooiiireineinersetneeseiesseeeeeesessessessens
B.8.5 Additional information 0N thiSDOOK ...

APPENDIX C: LIBRARY FUNCTIONS AND PACKAGES
C.1 GENERIC FUNCTION UNCHECKED CONVERSI ON.......cocuiiiiiiiciiiesssi s ssssss s sssssssssssssssssnens

C.2 GENERIC FUNCTION UNCHECKED DEALLOCATI ON
C.4 THE PACKAGE STANDARD.................

C.5THE PACKAGE ADA. TEXT_I O
C.6 THE PACKAGE ADA. SEQUENTT AL_T Ottt s se s sesssssesaes
C.7 THE PACKAGE ADA. CHARACTERS. HANDLI NGi......costttritiereseesesesesesesesesesesesesesesesesssssesesesesssesssssssesssssssesaes
C.8 THE PACKAGE ADA. STRI NGS. BOUNDED........cccstttttterenteeseseesesesesesesesessssss st sesssssssesssssssesssssssesssssssensaes
C.OTHE PACKAGE | NTERFACES. C...uotiiiteetteenteesesee ettt sttt sttt
C.10 THE PACKAGE ADA. NUNERI CS.....oootnitiiiieresteeseseseesesesssese s sesssssssesaes

C.11 THE PACKAGE ADA .NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS
C.12 THE PACKAGE ADA. COMVAND LI NEcoiiitiririiereneeenenenesese s seenes

C.13 THE PACKAGE ADA. FI NALI ZATI ON..ututiiteeteeeseeesestsesesesssese s st sessssssessssssesssssssessssssesaes
C.14 THE PACKAGE ADA. TAGS.......octiiteetteestsesests ettt sttt sttt sttt sttt sttt sttt sttt

C.15 THE PACKAGE ADA. CALENDAR........ccootttttteresteetstsesests sttt sttt sttt sttt sttt
C.16 THE PACKAGE SYSTEM.....cciiiitiiieeieeesesesesteese sttt sttt sttt sttt sttt

APPENDIX D: ANSWERS TO SELECTED EXERCISES

FROM CHAPTER 2.ttt sttt se e e st e et ss e e e s ss s e e e b e e e e e e b e 8 eE b e b e e e e e b b e A e b e b e b e e eeeb et eenEebebebebebnbesnsebesssnea
FROM CHAPTER 3.ttt sttt se s se e s e et e s e e s e e e e £ 88 eE e e b e 8 e e b e b e e eEeE b e A e e e b e b e e ebebebebnb et et ebebebebesnsebesesneas
FROM CHAPTER 4 ...ttt e st e et s et b8 e e e £ £ 8 e e e e £ e 8 e 8 E b e e eE e b b e A e b e b b e e eE e b e b e b nb et e b e b nb et et esneebesesnna
FROM CHAPTER 5.ttt sttt e et s et £ 8 e e £ £ 8 n e e e £ e 8 s e £ e 8 e 8 e e e b b e A e b e b b e e ee e b e b e e eE et e b e b nb et et esnenbesesnea
FROM CHAPTER B......ooeieiieeeeisisiseeesis sttt es st se s se et ss e e st ss s e et s sesese s e s seee e b s e se e b e b e e eeeE e b e s eEebebesebebebeenb et et esebebebesneebesesneas
FROM CHAPTERO...........

FROM CHAPTER 13
FROM CHAPTER 14
FROM CHAPTER 19

Preface

This book is aimed at students and programmers who wish to learn the object-oriented language Ada 95. The
book illustrates the language by showing how programs can be written using an object-oriented approach. The
book treats Ada 95 as alanguageinits own right and not just as an extension to Ada 83.

The first chapter provides an introduction to problem solving using an object-oriented design methodology.
The methodology illustrated in thisintroductory chapter is based on Fusion.

The next three chapters concentrate on the basic constructs in the Ada 95 language. In particular the use of
types and subtypes is encouraged. By using types and subtypes in a program the compiler can help spot many
errors and inconsistencies at compile-time rather than run-time.

The book then moves on to discuss the object-oriented features of the language, using numerous exanples to
illustrate the ideas of encapsulation, inheritance and polymorphism. A detailed case study of the design and
implementation of a program using an object-oriented design methodol ogy isincluded.

An introduction to the tasking features of Adais included. Finally a text user interface API is developed to
illustrate in a practical way the use of object-oriented components in a program. Several programs that use this
interface are shown to illustrate the processes involved.

Exercises and self assessment questions are suggested for the reader at the end of each chapter to allow the
reader to practise the use of the Ada componentsillustrated and to help reinforce, the reader's understanding of the
material in the chapter. Answers to many of the practical exercises are given at the end of the book.

I would in particular like to thank Corinna for putting up with my many long hoursin the ‘ computer room’ and
her many useful suggestions on the presentation and style used for the material in this book.

Website

Support material for the book can be found on the Authors website:
http:// ww. it.brighton. ac. uk/ ~mas. The material consists of further solutions, source code, artwork
and general information about Ada 95.

Michael A. Smith
Brighton, May 2001

M.A.Smith@brighton.ac.uk

O M A Smith - May not be reproduced without permission

XV

Preface

The example programs shown in this book use the following conventions:

Item in program

Example

Convention used

Attribute of an object

I nt eger' Last

Starts with an upper-case | etter.

or type
Class package Cass_cell i s |lIsdeclared asapackage prefixed
type Cell is with thename*Cl ass_’. Theclass
private name is given to the private type
that isthen used to elaborate

private instances of the class.
end d ass_cel |;

I nstance method: Di splay(The:in Cell) Thefunction or procedureisin

function or procedure

lowercase and the first parameter
passed to it is an instance of the
classwhichisnamedt he.

Instance attribute: Bal ance: Fl oat; Starts with an upper-case letter in
adataitem contained the private part of the package.

in an object.

Class attribute: The_Count: Integer; Startswith The_ andisdeclared in
aglobal dataitem that the private part of the package.

is shared between all

instances of the class

Constant or Max Starts with an upper-case | etter.
enumeration

Function or procedure | Deposi t Starts with an upper-case letter..

Package Pack_Account Startswith ‘Pack_".
Formal parameter Amount Starts with an upper-case |etter.
Protected type protected type PT_Ex Startswith ‘PT_’
is
entry Put(i:in T);
entry get(i:out T);
end PT_ex;
Reserved word procedure Isin bold lower-case.
Task type task type Task_Ex is Startswith ‘Task_".
entry Start;
end Task_Ex;
Type or subtype Col our Starts with an upper-case | etter.
Variable name M ne Starts with an upper-case letter..
P_Ch An access value for an item will

start with‘P_".

1.1 Glossary of terms used

Accesstype

Access value

The address of an object.

A type used to elaborate an access value

O M A Smith - May not be reproduced without permission

XVi

Actual
parameter

Ada83

Ada95

Adaclass

Allocator

Base class

Class

Preface

The physical object passed to afunction, procedure, entry or generic unit. For
example, in the following statement the actual parameter to the procedure Put
is Nurber .

Print(Number);

The version of the language that conformsto ANSI/MIL-STD 1815A
ISO/IEC 8652:1983, 1983. Ada 83 is superseded by Ada 95. Thelanguageis
named after Ada Augustathe Countess of Lovelace, daughter of the poet
Lord Byron and Babbage's ‘ programmer’.

The version of the language that conformsto ANSI/ISO/IEC 8652:1995,
January 1995. The I SO standard was published on 15th February 1995. Ada
95 is now often referred to as Ada

In Adatheterminology classis used to describe a set of types. To avoid
confusion thiswill be termed an Ada class.

An allocator is used to claim storage dynamically from a storage pool. For
example, storage for an Integer is allocated dynamically with:

P_Int := new Integer;

A class from which other classes are derived.

The specification of atype and the operations that are performed on an
instance of thetype. A classis used to create objects that share acommon
structure and behaviour.

The specification of aclassAccount isasfollows:

package Cl ass_Account is
type Account is private;
subtype Money is Float;

function Balance (The:in Account) return Mney;
-- Ocher nethods on an instance of an Account
private
type Account is record
Bal ance_Of : Money := 0.00; --Anmount in account
end record;
end C ass_Account;

O M A Smith - May not be reproduced without permission

Class attribute

Class method

Controlled
object

Discriminant

Dynamic-
binding

Preface

A data component that is shared between all objectsin the class. In effectitis
aglobal variable which can only be accessed by methodsin the class. A class
attributeis declared in the private part of the package representing the class.
For example, the class attribute The _| nt er est _Rat e intheclass

I nt erest _Account isdeclared in the private part of the package as
follows:

package O ass_lInterest_Account is
type I nterest_Account is private;

procedure Set _Rate(Rate:in Float);

private
type Interest_Account is new Account with record
Bal ance_Of . Money : = 0.00;
Accunul ated_Interest : Mney := 0.00;
end record;

The_Interest_Rate : Float := 0.00026116;
end C ass_Interest Account;

A procedure or function in a class that only accesses class attributes. For
example, the method Set _Rat e intheclassl nt er est _Account which
setsthe class attribute The_| nt er est _Rat e isasfollows:

procedure Set Rate(Rate:in Float) is

begi n
The_Interest _Rate := Rate;
end Set _Rate;

Note: As Set _Rat e is a class method an instance of the class is not
passed to the procedure.

An object which hasinitialization, finalization and adjust actions defined. A
limited controlled object only hasinitialization and finalization defined as
assignment is prohibited.

The declaration of an object may be parameterized with avalue. Thevalueis
adiscriminant to the type. For example, the declaration of cor i nna is
parameterized with the length of her name.

type Person(Chs: Str_Range := 0) is record

Nare : String(1 .. Chs);
Hei ght : Height _Cm := 0;
Sex . Gender;

end record;

Corinna : Person(7);

The binding between an object and the message that is sent to it isnot known
at compile-time.

XVii

O M A Smith - May not be reproduced without permission

XViii Preface

Elaboration

Encapsulation

Formal
parameter

Generic

Inheritance

At run-time the el aboration of adeclaration creates the storage for an object.
For example:

M ke : Account;

creates storage at run-time for the object M ke.

The provision of apublic interface to a hidden (private) collection of data
procedures and functions that provide a coherent function

In aprocedure, function, entry or generic unit the name of the item that has
been passed. For example, in the procedure pr i nt shown below the formal
parameter isVal ue.

procedure Print(Value:in Integer) is
begi n

-- body
end print;

A procedure, function or package which is parameterized with atype or types
that are used in the body of the unit. The generic unit must first be
instantiated as a specific instance before it can be used. For example, the
packagel nt eger _I o inthe package Ada. Text _| o is parameterized
with the integer type on which /O isto be performed. This generic unit must
be instantiated with a specific integer type before it can be used in a program.

The derivation of aclass (derived class) from an existing class (base class).
The derived class will have the methods and instance/class attributesin the
class plus the methods and instance/cl ass attributes defined in the base class.
In Adathisis called programming by extension.

Theclassl nt er est _Account that isderived from the classAccount is
specified asfollows:

with O ass_Account;
use O ass_Account;
package C ass_|nterest_Account is

type Interest_Account is new Account with private;

procedure Set_Rate(Rate:in Float);
procedure Calc_Interest(The:in out
_ I nterest _Account);
private
Daily Interest_Rate: constant Float := 0.00026116;
type Interest_Account is new Account with record
Accumul ated_I nterest : Mney := 0.00
end record;
The_Interest _Rate . Float := 0.00026116;
end Cl ass_| nterest_Account;

O M A Smith - May not be reproduced without permission

Instance
attribute

Instance method

Instantiation

Message

Meta-class

Method

Multiple
inheritance

Preface

A data component contained in an object. In Adathe data components are
contained in arecord structure in the private part of the package.

type Account is record
Bal ance_Of : Money := 0.00; --Instance attribute
end record;

A procedure of function in aclass that accesses the instance attributes (data
items) contained in an object. For example, the method Bal ance accesses
theinstance attribute Bal ance_Of .

function Balance(The:in Account) return Money is
begi n
return The. Bal ance_Of;
end Bal ance;

The act of creating a specific instance of ageneric unit. For example, the
generic package| nt eger _1 o inthe package Ada. Text _| o canbe
instantiated to deliver the package Pack _Mar k_1 o which performs I/O on
theinteger type Exam Mar k asfollows:

type Exam Mark is range 0 .. 100;

package Pack_Mark_lo is new
Ada. Text _l o. | nt eger _I o(Exam_Mar k) ;

Then a programmer can write

M randa : Exam Mark;

Pack_Mark_lo.Put(Mranda);

to write the contents of the | nt eger object M r anda.

The sending of datavaluesto a method that operates on an object. For
example, the message 'deposit £30 in accountM ke' iswrittenin Adaas:

Deposit(Mke, 30);

Note: The object to which the messageis sent isthefirst parameter.

Aninstance of ameta-classisaclass. Meta-classes are not supported in Ada.
Implements behaviour in an object. A method isimplemented as a procedure
or function in aclass. A method may be either a class method or an instance

method.

A class derived from more than one base class. Multiple inheritance is not
directly supported in Ada.

XiX

O M A Smith - May not be reproduced without permission

XX Preface

Object

Overloading

Overriding
Polymorphism

Rendezvous

Representation
clause

Static binding

Type

Aninstance of aclass. An object has astate that isinterrogated / changed by
methodsin the class. The object mike that is an instance of Account is
declared asfollows:

M ke: Account;

When an identifier can have several different meanings. For example, the
procedure Put inthe package Ada. Text _| o hasseveral different
meanings. Output an instance of aChar act er, output an instance of a
String.

Put ("Hello Worl"); Put('d");

The ability to send a message to an object whose type is not known at
compile-time. The method selected depends on the type of the receiving
object. For example the message 'Di spl ay' issent to different types of
picture elementsthat are held in an array.

Di spl ay(Picture_Elenment(l));

The interaction that occurs when two tasks meet to synchronize and possibly
exchange information.

Directs the compiler to map a program item onto specific hardware features
of amachine. For example, | ocat i on isdefined to be at address
16#046CH.

Mc_Address : constant Address : =
To_Address(16#046C#);

Location : |nteger;
for Location' Address use M _Address;

The binding between an object and the message that it issent to it is known
at compile-time.

A type defines a set of values and the operations that may be performed on
those values. For example, thetype Exam _Mar k defines the values that may

be given for an exam in English.

type Exam Mark is range O .. 100;

English : Exam Mark

O M A Smith - May not be reproduced without permission

To my wife Corinna Lord, daughter Miranda and mother Margaret Smith

and guinea pig Delphi

O M A Smith - May not be reproduced without permission

1 Introduction to programming

1 Introduction to programming

A computer programming language is used by a programmer to express the solution to a problem in terms
that the computer system can understand. This chapter looks at how to solve a small problem using the
computer programming language Ada 95.

1.1 Computer programming

Solving a problem by implementing the solution using a computer programming language is a meticul ous process.
In essence the problem is expressed in terms of a very stylized language in which every detail must be correct.
However, this is a rewarding process both in the sense of achievement when the program is completed, and
usually the eventual financial reward obtained for the effort.

Like the planet on which we live where there are many different natural languages, so the computer world also
has many different programming languages. The programming language Ada 95 isjust one of the many computer
programming languages used today.

1.2 Programming languages

In the early days of computing circa 1950s, computer programs had to be written directly in the machine
instructions of the computer. Soon assembly languages were introduced that allowed the programmer to write
these instructions symbolically. An assembler program would then translate the programmer’s symbolic
instructions into the real machine code instructions of the computer. For example, to calculate the cost of a

quantity of apples using an assembly language the following style of symbolic instructions would be written by a
programmer:

LDA AMOUNT_OF_OF _APPLES ; Load into the accunul ator # pounds

M.T PRI CE_PER_PQOUND ; Multiply by cost per pound of apples
STA COST_OF_APPLES ; Save result

Note: Each assembly language instruction corresponds to a machine code instruction.

In the period 1957—1958 the first versions of the high-level languages FORTRAN & COBOL were developed. In
these high-level programming languages programmers could express many ideas in terms of the problem rather
than in terms of the machine architecture. A compiler for the appropriate language would translate the
programmer’s high level statements into the specific machine code instructions of the target machine. Advantages
of the use of acompiler include:

) Gainsin programmer productivity asthe solution is expressed in terms of the problem rather
than in terms of the machine.

) If written correctly, programs may be compiled into the machine instructions of many
different machines. Hence, the program may be moved between machines without having to
be re-written.

For example, the same cal culation to calcul ate the cost of applesis expressed in FORTRAN as:

COST = PRI CE * AMOUNT

O M A Smith - May not be reproduced without permission

2 Introduction to programming

1.3 Range of programming languages

Since the early days of computer programming languages the number and range of high level languages has
multiplied greatly. However, many languages have also effectively died through lack of use. A simplistic
classification of the current paradigmsin programming languages is shown in the table bel ow:

Type of language | Brief characteristics of the language Example
Functional The problem is decomposed into individual ML
functions. To afunction is passed read only data
values which the function transforms into a new
value. A function itself may also be passed asa
parameter to afunction. Astheinput datato a
function is unchanged individual functions may be
executed simultaneously as soon asthey have their

input data.

Logic The problem is decomposed into rules specifying Prolog
constraints about aworld view of the problem.

Object-oriented The problem is decomposed into interacting Ada9s
objects. Each object encapsulates and hides Eiffel
methods that manipulate the hidden state of the Java
object. A message sent to an object evokes the Smalltalk
encapsulated method that then performsthe
requested task.

Procedural The problem is decomposed into individual C

procedures or subroutines. This decompositionis Pascal
usually done in atop down manner. In atop down
approach, once a section of the problem has been
identified as being implementable by a procedure,
it too is broken down into individual procedures.
The data however, isnot usually part of this
decomposition.

1.3.1 Computer programming languages

A computer programming language is a special language in which a high level description of the solution to a
problem is expressed. However, unlike a natural language, there can be no ambiguity or error in the description of
the solution to the problem. The computer is unable to work out what was meant from an incorrect description.

For example, in the programming language Ada 95, to print the result of multiplying 10 by 5 the following
programming language statement is written:

Put(10 * 5);

To the non programmer this is not an immediately obvious way of expressing: print the answer to 10
multiplied by 5.

1.3.2 Therole of a compiler

The high-level language used to describe the solution to the problem, must first be converted to aform suitable for
execution on the computer system. This conversion process is performed by a compiler. A compiler is a program
that converts the high-level language statements into a form that a computer can obey. During the conversion
process the compiler will tell the programmer about any syntax or semantic mistakes that have been made when
expressing the problem in the high-level language. This process is akin to the work of a human translator who
converts a document from English into French so that a French speaker can understand the contents of the
document.

Once the computer program has been converted to a form that can be executed, it may then be run. It usually
comes as a surprise to many new programmers that the results produced from running their program is not what

O M A Smith - May not be reproduced without permission

1.4

1.5

Introduction to programming 3

they expected. The computer obeys the programming language statements exactly. However, in their formulation
the novice programmer has formulated a solution that does not solve the problem correctly.

A small problem

A local orchard sells some of itsrare variety applesinitslocal farm shop. However, the farm shop has no electric
power and hence uses a set of scales which just give the weight of the purchased product. A customer buying
apples, fillsabag full of apples and takes the apples to the shop assistant who weighs the apples to determine their
weight in kilograms and then multiples the weight by the price per kilogram.

If the shop assistant is good at mental arithmetic they can perform the calculation in their head, or if mental
arithmetic is not their strong point they can use an alternative means of determining the cost of the apples.

Solving the problem using a calculator

For example, to solve the very simple problem of calculating the cost of 5.2 kilos of applesat £1.20 akilo using a
pocket calculator the following 4 steps are performed:

Pocket calculator Step | Steps performed
6 I _
6. 24 1 Enter the cost of akilo of apples:
c1. 20
M *
S d 2 Enter the operation to be performed:
7118|119]|-
3 Enter the number of kilos to be bought:
4|1 (56| |+ 5. 2
1 2 3 C 4 Enter calculate
0 . =
. /
Note: The keys on the cal culator are:
C Clear the display and turn on the calculator if off
S Save the contents of the display into memory
M Retrieve the contents of the memory
+-*/ Arithmetic operations
* Multiply / Division
+ plus - minus

= Calculate
When entered, these actions cause the calculation 1.20 * 5.2 to be evaluated and displayed. In solving the
problem, the problem is broken down into several very simple steps. These steps are in the ‘language’ that the
calculator understands. By obeying these simple instructions the calculator ‘solves' the problem of the cost of 5.2
kilos of apples at £1.20 akilo.

O M A Smith - May not be reproduced without permission

4 Introduction to programming

1.5.1 Making the solution more general

The calculation using the pocket calculator can be made more general by storing the price of the apples in the
calculator's memory. The price of a specific amount of apples can then be calculated by retrieving the stored price
of the apples and multiplying this retrieved amount by the quantity required. For example, to setup the price of
applesin the calculator's memory and cal culate the cost of 4.1 kilos of apples, the processis as follows:

Pocket calculator Step | Steps performed
1 Enter the cost of akilo of apples:
7 N c1. 20
4.92
2 Save this value to the calculator’ s memory:
sl [m][r][* S
3 Retrieve the value from memory:
71[8][9][- M Y
4115 6 + 4 Enter the operation to be performed:
*
11(2|(3]|C

5 Enter the number of kilos to be bought:
0 — 4.1

. /

6 Enter calculate

To calculate the price for each customer’s order of apples, only steps 3—6 need be repeated. In essence, a
generalized solution to the problem of finding the price of any quantity of apples has been defined and
implemented.

1.6 Solving the problem using the Ada 95 language
To solve the problem of calculating the cost of a quantity of apples using the programming language Ada 95, a

similar process to that used previously when using a pocket calculator is followed. This time, however, the
individual stepsare asfollows:

Step Description

1 Set the memory locationPri ce_per _ki | o tothe cost per kilogram of the
apples.

2 Set the memory locationKi | os_of _appl es to the kilograms of apples
required.

3 Set the memory location Cost to the result of multiplying the contents of

memory locationPri ce_per _ki | o by the contents of the memory location
Ki | os_of appl es.
4 Print the contents of the memory location Cost .

Note: Although a shorter sequence of steps can be written to calculate 1.2 multiplied by 5.2 the above
solution can easily be extended to allow the price of any number of kilograms of apples to be
calculated.

In Ada 95 like most programming languages when a memory location is required to store a value, it must first be
declared. Thisis done for many reasons, some of these reasons are:

) So that the type of items that are to be stored in this memory location can be specified. By
specifying the type of the item that can be stored the compiler can allocate the correct amount
of memory for the item as well as checking that a programmer does not accidentally try and
store an inappropriate item into the memory location.

O M A Smith - May not be reproduced without permission

Introduction to programming 5

° The programmer does not accidentally store a value into amemory location COst when they
meant Cost . The programmer accidentally typed zero (0) when they meant the letter (o).
The sequence of steps written in pseudo English is transformed into the following individual Ada 95
statements which, when obeyed by a computer, will display the cost of 5.2 kilograms of apples at £1.20 a

kilogram.
Step Line | Ada95 statements
1 Price_per _kilo : Float;
2 Ki | os_of _apples : Float;
3 Cost : Float;
1 4 Price_per _kilo := 1.20;
2 5 Kil os_of apples := 5.2;
3 6 Cost: = Price_per_kil o*Kil os_of _appl es;
4 7 Put (Cost);
8 New_Li ne;
Note: Words in bold type are reserved words in the Ada 95 language and cannot be used for the name of a

memory location.

The name of the memory location contains the character _ to make the name more readable. Spacesin
the name of a memory location are not allowed.

Each Ada 95 statement is terminated with a ;.

Multiplication iswritten as* .

Theindividual lines of code of the Ada 95 program are responsible for the following actions:

Line Description

1 Allocates amemory location called Pri ce_per ki | o that isused to
store the price per kilogram of apples. This memory location is of type
Fl oat and can hold any number that has decimal places.

2—3 Allocates memory locations: Ki | os_of _appl es and Cost .

4 Sets the contents of the memory locationPri ce_per kil oto 1.20. The
:= can beread as 'is assigned the value'.

5 Assign 5.2 to memory locationKi | os_of _appl es.

6 Sets the contents of the memory location Cost to the contents of the

memory locationPri ce_per _ki | o multiplied by the contents of the
memory locationKi | os_of _appl es.

7 Writes the contents of the memory location Cost onto the computer
screen.
8 Starts a new line on the computer screen.

This solution is very similar to the solution using the pocket calculator, except that individually named
memory locations are used to hold the stored values, and the calculation is expressed in a more human readable
form.

O M A Smith - May not be reproduced without permission

6

Introduction to programming

An animation of the above Ada 95 program is shown below. In the animation the contents of the memory
locations are shown after each individual Ada 95 statement is executed. When a memory location is declared in
Ada95insideafunctionitsinitial contents are undefined.

Ada 95 statements price O kilos O Cost

Price_per _kilo : Float;

Kil os_of apples : Float; U U U

Cost . Float;

Price_per_kilo := 1.20; 1.20 U U

Ki |l os_of _apples := 5. 2; 1.20 52 U

Cost := Price_per_kilo * 1.20 52 6.24

Ki | os_of appl es; . i .

Put (- Cost) 1.20 52 || 6.24

Note: U indicates that the contents of the memory location are undefined.

O Dueto lack of room in the title column the variable Pri ce_per ki | o isrepresented by pri ce
andKi | os_of _appl es byki | os.

1.6.1 Running the program

1.7

The above lines of code, though not a complete Ada 95 program, form the core code for such a program. When
this code is augmented with additional peripheral code, compiled and then run, the output produced will be of the
form:

6. 24

A person who knows what the program does, will instantly know that this represents the price of 5.2 kilograms
of apples at £1.20 a kilogram. However, thiswill not be obvious to a casual user of the program.

Thedecl ar e block

In Ada adeclaration is separated from an executable statement. One way of expressing this split isthe decl ar e
block that is specified asfollows:

decl are
Cost : Float;
begi n
Cost := 5.2 * 1.20;
Put (Cost);
end;
Note: By using this construct our Ada 95 programming statements are almost a complete program.

O M A Smith - May not be reproduced without permission

Introduction to programming 7
The section of adeclare block areillustrated below in Figure 1.1

Decl ar e Declaration of variables used in

he code section.
< Cost : Float;

Begi n
Cost := 5.2 * 1.20: </Executable code
Put (Cost);

end;

Figure 1.1 Thedeclareblock in Ada.

1.8 Theroleof comments

To make an Ada 95 program easier to read, comments may be placed in the program to aid the human reader of
the program. A comment starts with- - and extends to the end of the line. It isimportant however, to realize that
the comments you write in a program are completely ignored by the computer when it comes to run your program.
For example, the previous fragment of code could be annotated with comments as follows:

decl are
Price_Per_Kilo : Float; --Price of apples
Kilos_ O _Apples : Float; -- Appl es required
Cost . Float; -- Cost of apples
begi n
Price_Per_Kilo = 1.20; --Set cost £1.20
Kilos_O _Apples := 5.2; --Kilos required
Cost := Price_Per_Kilo * Kilos_O _Appl es; --Evaluate cost
Put (Cost); --print the cost
New_Li ne; --Print a newline
end;
Note: Thisis an example of comments, the more experienced programmer would probably miss out many of

the above comments as the effect of the code is easily understandable.

Comments that do not add to a reader’s understanding of the program code should be avoided. In some
circumstances the choice of meaning full names for memory locations is all that is required. As a general rule, if
the effect of the code is not immediately obvious then a comment should be used to add clarity to the code
fragment.

O M A Smith - May not be reproduced without permission

8 Introduction to programming

1.9 Summary

The statementsin the Ada 95 programming language seen so far are illustrated in the table bel ow:

Ada 95 statement/declaration Description

Cost : Float; Declare amemory location called cost .

Cost := 1.2 * 5.2; Assign to the memory location cost the result
of evaluating 1.2 multiplied by 5.2.

Put("H!"); Print themessage Hi ! .

Put (Cost); New_Line; Print the contents of the memory location
Cost followed by anewline.

Statements of this form allow a programmer to write many different and useful programs.

1.10 A more descriptive program

By adding additional Ada 95 statements, the output from a program can be made clear to al who use the program.
For example, the program in Section 1.6 can be modified into the program illustrated below. In this program, a
major part of the program’s code is concerned with ensuring that the user is made aware of what the results mean.

Line Ada 95 statements

1 decl are

2 Price_Per _Kilo : Float; --Price of apples
3 Kil os_Of _Appl es: Float; --Appl es required
4 Cost . Float; --Cost of apples
5 begi n

6 Price_ Per Kilo := 1.20;

7 Ki |l os_of _apples := 5.2;

8 Cost := Price_per_kilo * Kilos_of _apples;

9 Put ("Cost of apples per kilo : ");

10 Put(Price_per_kilo);

11 New_Li ne;

12 Put ("Kilos of apples required K");

13 Put (Kil os_of _apples);

14 New_Li ne;

15 Put ("Cost of apples £");

16 Put (Cost);

17 New_Li ne;

18 end

O M A Smith - May not be reproduced without permission

Introduction to programming 9

Line Description
1 Start a declare block.

2—4 Declare the variables used in this fragment of code.

5 Begin the code section of the block.

6-8 Calculate the cost of 5.2 kilograms of apples at £1.20 per kilogram.

9 Displaysthe message Cost of apples per kilo £ ontothe
computer screen. The double quotes around the text message are used to

signify that thisis atext message to be printed rather than the contents of
a memory location.

10 Displays the contents of the memory location Cost onto the computer
screen after the above message.
11 Starts anew line of output on the computer screen.

12—14 | Asforlines7—9
but this time the message iskKi | os of appl es required K andthe
memory location printed isKi | os_of _appl es.

15—17 | Asforlines7—9
but this time the messageisCost of appl es £ andthe
memory location printed isCost .

18 End the declare block

1.10.1 Running the new program

With the addition of some extra lines of code, the above program can be compiled and then run on a computer
system. Once executed the following results will be displayed:

Cost of apples per kilo £ 1.2
Kilos of apples required K 5.2
£ 6.2

Cost of appl es 4

Thismakesit easy to see what the program has cal cul ated.
1.11 Types of memory location

So far the type of the memory location used has been of type FI oat . A memory location of type Fl oat can hold
any number that has a fractional part. However, when such avalue is held it is only held to a specific number of
decimal places. Sometimes it is appropriate to hold numbers that have an exact whole value, e.g. a memory
location peopl e that represents the number of people in aroom. In such a case the memory location should be
declared to be of type| nt eger .

For example, the following fragment of code usesan| nt eger memory location to hold the number of people

inaroom.
Room : | nteger; -- Menory | ocation
Room : = 7; -- Assigned the nunber 7

O M A Smith - May not be reproduced without permission

10

I ntroduction to programming

The choice of the type of memory location used, will of course depend on the values the memory location is
required to hold. As a general rule, when an exact whole number is required, then a memory location of type
I nt eger should be used and when the value may have afractional part then a memory location of type Fl oat
should be used.

Memory location Assignment to memory location
Peopl e : |nteger People := 2;
Wi ght : Fl oat Weight := 7.52;

1.11.1 Warning

Ada 95 will not alow assignments or expressions that mix different types of memory locations or numbers. In
particular this means that you cannot assign a number with decimal places or implied decimal placesto alocation
that holds an integer value. Likewise, you cannot assign a whole number to a memory location that holds a
number with potential decimal places.

For example, the following assignment isinvalid:

Memory location Invalid assignment Reason

Peopl e: | nt eger People := 2.1, Y ou cannot assign a number
with afractional partto a
memory location of type
Integer.

Y ou cannot assign an whole
number to alocation that holds
aresult with implied decimal
places.

peopl e + wei ght ; The right hand side mixes whole
numbers and numbers with
decimal places.

Wi ght : Hoat Véi ght :

I
N

Peopl e :

The reason for thisinitialy rather severe restriction is to help prevent programming errors go undetected. For
example, if you accidentally stored a number with decimal places into a location that only contained a whole
number then the resultant loss of precision may result in an error in the logic of the program.

1.12 Repetition

So far, al the Ada 95 programs used in the examples have used straight line code. In straight line code the
program consists of statements that are obeyed one after another from top to bottom. There are no statements that
affect the flow of control in the program. This technique has allowed us to produce a solution for the specific case
of the cost of 5.2 kilograms of apples at £1.20 per kilogram.

Using this strategy, to produce a program to list the cost of apples for a series of different weights would
effectively involve writing out the same code many times. An example of this style of coding isillustrated below:

decl are
Price _Per _Kilo : Float; --Price of apples
Kil os_O _Appl es: Fl oat; --Appl es required
Cost . Fl oat; --Cost of apples
begi n
Price Per Kilo := 1.20;
Put ("Cost of apples per kilo : ");
Put (Price_Per_Kilo);
New_Li ne;
Put("Kilo's Cost");
New_Li ne;
Kilos_O _Appl es .= 0. 1;

O M A Smith - May not be reproduced without permission

Introduction to programming 11

Cost := Price_Per _Kilo * Kilos_O _Appl es;
Put (Kilos_O _Apples);
Put (" ")
Put (Cost);
New_Li ne;
| Kilos_O_Apples := 0.2
Cost := Price_Per_Kilo * Kilos_O _Appl es;
Put (Kilos_O _Apples);
Put (" ")
Put (Cost);
New_Li ne;
etc.
|end; |

Whilst this is a feasible solution, if we want to calculate the cost of 100 different weights this will involve
considerable effort and code. Even using copy and paste operations in an editor to lessen the typing effort, will
still involve considerable effort! In addition, the resultant program will be large and consume considerable
resources.

1.13Introduction to thewhi | e statement

In Ada 95 a whi | e statement is used to repeat program statements while a condition holds true. A whi | e
statement can be likened to arail track asillustrated in Figure 1.2. While the condition is true the flow of control
is along the true track. Each time around the loop the condition is re-evaluated. Then, when the condition is found
to befalse, the falsetrack istaken.

Condi tion

St atement s
True JExecuted while

condition is true
Fal se

v

Figure 1.2 Thewhi | e statement asarail track.

Inawhi | e loop the condition is always tested first. Due to this requirement if the condition initially evaluates
to false then the code associated with the whi | e loop will never be executed.

O M A Smith - May not be reproduced without permission

12 Introduction to programming

1.13.1 Conditions

In the language Ada 95, a condition is expressed in a very concise format which at first sight may seem strange if
you are not used to a mathematical notation. For example, the conditional expression: ‘the contents of the memory
location count islessthan or equal to 5" iswritten asfollows:

count <=5

Note: The memory location named count will need to be declared as:

[count : Tnteger;

The symbols used in a condition are as follows:

Symboal M eans Symbol | Means
< Lessthan <= Less than or equal to
= Equal to = Not equal to
> Greater than >= Greater than or equal to

If the following memory locations contain the following values:

Memory location Assigned the value
Tenperature : |nteger,; Tenperature : = 15;
Wi ght . Fl oat; Wei ght : = 50.0;

then the following table shows the truth or otherwise of several conditional expressionswrittenin Ada 95.

In English In Ada 95 Condition is
The temperatureis less than 20 Tenperature < 20 |true
The temperature is equal to 20 Tenperature = 20 |fal se
Theweight is greater than or equal to 30 | Wei ght >= 30.0 true
20 is|ess than the temperature 20 < Tenperature |[false
Note: As a memory location that holds a Fl oat value represents a number that is held only to a certain

number of digits accuracy, it is not a good idea to compare such a value for equality = or not equality
/=.

1.13.2 Awhi | e statement in Ada 95
Illustrated below is a fragment of code that uses a whi | e statement to write out the text message Hel | o five

times:
decl are
Count : Integer;
begi n
Count := 1; --Set count to 1
while Count <= 5 | oop --\Wile count less than or equal 5
Put ("Hello"); --Print Hello
New_Li ne;
Count := Count + 1, --Add 1 to count
end | oop;
end;
Note: The statement: Count := Count + 1; adds1tothecontentsof Count and puts the result back

into the memory location Count .

O M A Smith - May not be reproduced without permission

Introduction to programming 13

In this code fragment, the statements between | oop and end | oop; are repeatedly executed while the
contents of Count arelessthan or equal to 5. The flow of control for the above whi | e statement isillustrated in

Figure 1.3.

Count <=5

Put("Hello");
True o New |ine;
Count := Count + 1,

Fal se

v

Figure 1.3 Flow of control for awhi | e statement in Ada 95.

1.13.3 Using thewhi | e statement

The real advantage of using a computer program accrues when the written code is repeated many times, thus
saving the implementor considerable time and effort. For example, if we wished to produce a table representing
the cost of different weights of apples, then a computer program is constructed that repeats the lines of Ada 95
code that evaluate the cost of a specific weight of apples. However, for each iteration of the calculation the
memory location that contains the weight of the applesis changed. A fragment of Ada 95 code to implement this
solution isillustrated below:

decl are
Price_Per_Kilo : Float; --Price of apples
Kilos_O _Apples: Float; --Appl es required
Cost . Fl oat; --Cost of apples
begi n

Price_Per_Kilo := 1.20;

Put ("Cost of apples per kilo : ");
Put (Price_Per_Kilo); New_Line;

Put("Kilo's Cost"); New_Line;

Kilos_O _Apples := 0.1;

while Kilos_O _Apples <= 10.0 | oop --While lines to print
Cost := Price_Per_Kilo * Kilos_O _Apples; --Calcul ate cost
Put (Kilos_O _Apples); --Print results
Put(" ")
Put (Cost);
New_Li ne;
Kilos_OF _Apples := Kilos_O _Apples + 0.1; --Next val ue

end | oop;

end;

O M A Smith - May not be reproduced without permission

14 Introduction to programming

which when compiled with suitable peripheral code produces output of the form:

Cost of apples per kilo : 1.20

Kilo's Cost

0.1 0.12

0.2 0. 24

0.3 0. 36

0.4 0.48

0.5 0. 60

0.6 0.72

0.7 0. 84

0.8 0. 96

0.9 1.08

1.0 1.12

1.1 1.32

1.2 1. 44

1.3 1.56

. 9 9 11. 88

10.0 12. 00

Note: Using Put (Pri ce_Per_Kil o) ,Put (Kil os_Of _Appl es) and Put (Price) will cause the
value to be output in scientific notation. To get the effect of the format shown above the Put statements
would need to be changed to:
Put (Price_Per_ Kilo) -> Put(Price_Per_Kil o, Exp=>0, Aft =>2)
Put (Kil os_Of _Appl es) -> Put(Kilos_O _Appl es, Exp=>0, Af t =>2)
Put (Cost) -> Put (Cost, Exp=>0, Af t =>2) .
Thisisfully explained in Section 4.6.1.

1.14 Selection

Thei f construct is used to conditionally execute a statement or statements depending on the truth of a condition.

This statement can be likened to the rail track illustrated in Figure 1.4 in which the path taken depends on the truth
of acondition. However, unlikethewhi | e statement thereis no loop back to re-execute the condition.

|
Condi ti on
JStatenents
I\Tr ue Executed if
Fal se condition is true

Figure 1.4 Thei f statement represented asarail track.

O M A Smith - May not be reproduced without permission

Introduction to programming 15

For example, the following fragment of an Ada 95 program only prints out Hot ! when the contents of the
memory location Tenper at ur e are greater than 30.

decl are
Tenperature : |nteger;
begi n
Tenperature : = 30;
if Tenperature > 30 then --If tenperature greater than 30
Put ("Hot!"); --Say its hot
New Li ne;
end if;
end;

In this code fragment, the statements between t hen and end if; are only executed if the condition
Tenperature > 30 istrue. Theflow of control for the above fragment of codeisillustrated in Figure 1.5.

|Terrper-at ure > 30|

True _PUt("HOt!");
New_Li ne

Fal se

<

Figure 1.5 Thei f statement represented asarail track.
1.14.1 Usingthei f statement

The fragment of program code which was used earlier to tabulate alist of the price of different weights of apples
can be made more readable by separating every 5 lines by a blank line. This can be achieved by having a counter
count to count the number of lines printed and after the 5th line has been printed to insert a blank line. After a
blank line has been printed the counter count isreset to 0. This modified program is shown below:

decl are
Price_Per Kilo : Float := 1.20;
Kilos_Of _Apples : Float := 0.0;
Cost : Float;
Li nes_Qut put : Integer := 0;
begi n
Put ("Cost of apples per kilo : ");

Put(Price_Per_Kilo); New_Line;
Put("Kilo's Cost"); New_Line;

while Kilos_O _Apples <= 10.0 | oop --Wiile lines to print
Cost := Price_Per_Kilo * Kilos_O _Apples; --Calculate cost
Put (Kilos_O _Apples); --Print results
Put (" ")
Put (Cost);
New_Li ne;
Kilos_OF _Apples := Kilos_O _Apples + 0.1; --Next val ue
Li nes_Cut put := Lines_Qutput + 1; --Add 1
if Lines_Qutput >= 5 then --If printed group
New_Li ne; -- Print line
Li nes_Qut put := 0; -- Reset count
end if;
end | oop;
end;

O M A Smith - May not be reproduced without permission

16 Introduction to programming

which when compiled with additional statements would produce output of the form shown below:

Cost of apples per kilo : 1.20
Kilo's Cost
0.0 0.00
0.1 0.12
0.2 0.24
0.3 0. 36
0.4 0. 48
0.5 0. 60
0.6 0.72
0.7 0.84
0.8 0. 96
0.9 1.08
1.0 1.20
1.1 1.32
1.2 1.44
1.3 1.56
1.4 1.68
etc

Note: UsingPut (Price_Per_Kilo),Put (Kilos_O _Apples) and Put (Price) will causethe
value to be output in scientific notation. To get the effect of the format shown above the Put statements
would need to be changed to:

Put (Price_Per Kilo) -> Put(Price_Per_Kil o, Exp=>0, Aft =>2)
Put (Kil os_Of _Appl es) -> Put(Kilos_O _Appl es, Exp=>0, Af t =>2)
Put (Cost) -> Put (Cost, Exp=>0, Af t =>2) .

Thisisfully explained in Section 4.6.1.

1.15 Sdf-assessment

° What is acomputer programming language?
° What do the following fragments of Ada 95 code do?
decl are
I : Integer;
begi n
| = 10;
while | > 0 loop
Put(I);
I =1 - 1;
end | oop;
New_Li ne;
end;
decl are
Tenperature : |nteger;
begi n
Tenperature : = 10;
if Tenperature > 20 then
Put("It's Hot!");
end if;
if Tenperature <= 20 then
Put("It's not so Hot!");
end if;
New_Li ne;
end;

O M A Smith - May not be reproduced without permission

Introduction to programming 17

° Write an Ada 95 fragment of code for the following conditions. In your answer show how any
memory |ocation you have used has been declared.

The temperature is less than 15 degrees centigrade.

The distance to college is less than 15 kilometres.

The distance to college is greater than or equal to the distance to the football ground.
The cost of the bike isless than or equal to the cost of the hi-fi system.

1.16 Paper exercises

Write down on paper Ada 95 statements to implement the following. Y ou do not need to run these solutions.

° Name
Write out your name and address.

) Weight
Calculate the total weight of 27 boxes of paper. Each box of paper weighs 2.4 kilograms.

° Name
Write out the text message " Happy Bi rt hday" 3timesusing awhi | e loop.

° Timestable
Print the 7 timestable. The output should be of the form:

7* 1= 7
7* 2= 14
etc.

Hint: Writethe Ada 95 codeto print the line for the 3rd row, use a variabler owof typel nt eger to
hold the value 3.
7* 3= 21
Enclose these statementsin a loop that varies the contents of r owfrom 1 to 12.

° Weight table
Print atable listing the weights of 1 to 20 boxes of paper, when each box weighs 2.4 kilograms.

° Timestable
Print amultiplication table for all values between 1 and 5. Thetableto look like:
|1 2 3 4 5

111 2 3 4 5
2 |2 4 6 8 10
3 13 6 9 12 15
4 | 4 8 12 16 20
5 | 5 10 15 20 25

Hint: Write the Ada 95 code to print the line for the 2nd row, use a variabler ow of typel nt eger to
hold the value 2.
2 12 4 6 8 10
Enclose these statementsin a loop that varies the contents of r owfrom 1 to 5. Add statementsto print
the heading:

O M A Smith - May not be reproduced without permission

2

2.1

2.2

Softwar e design

This chapter looks at software production in the large. In particular it looks at problems that occur in the
development of large and not so large software systems. The notation used by UML (Unified Modelling
Language) is introduced as a mechanism for documenting and describing a solution to a problem that isto
be implemented on a computer system.

Thesoftwarecriss

In the early days of computing, it was the hardware that was very expensive. The programs that ran on these
computers were by today’s standards incredibly small. In those distant times computers only had a very limited
amount of storage; both random access memory and disk storage.

Then it al changed. Advances in technology enabled computers to be built cheaper, with afar greater capacity
than previous machines. Software developers thought, “Great! We can build bigger and more comprehensive
programs’. Software projects were started with an increase in scope and great opti mism.

Soon, with projects running over budget and not meeting their client’s expectations, the truth dawned: large
scale software construction is difficult. The early techniques that had been used in small scale software
construction did not scale up successfully for large scal e software production.

This can be likened to using abicycle to travel ashort distance. Whilst this is adequate for the purpose, the use
of abicycleisinappropriate if along distance has to be travelled in a short space of time. Y ou cannot just peddle
faster and faster.

A problem, the model and the solution

In implementing any solution to a problem, we must first understand the problem that is to be solved. Then, when
we understand the problem fully, a solution can be formulated.

There are many different ways of achieving an understanding of a problem and its solution. Usually, this
involves modelling the problem and its solution using either a standard notation or a notation invented by the
programmer. The advantage of using a standard notation is that other people may inspect and modify the
description of the problem and its proposed solution. For example, in building a house, an architect will draw up a
plan of the various components that are to be built. The client can view the plans and give their approval or
qualified approval subject to minor modifications. The builders can then use the plan when they erect the house.

Architect’s plan (model) Finished house

Writing a computer program involves the same overall process. First, we need to understand the task that the
computer program will perform. Then we need to implement a solution using the model that we have created.

An easy pitfall at thispoint isto believe that the model used for the solution of a small problem can be scaled
up to solve alarge problem. For example, to cross asmall stream we can put alog over the stream or if athletic we
can even jump over the stream. This approach to crossing a stream however, will not scale up to crossing a large
river. Likewise to build a 100-storey tower block, an architect would not simply take the plans for a 2-storey
house and instruct the builders to build some extrafloors.

O O
O[] O

O M A Smith - May not be reproduced without permission

Softwaredesign = 19

In software the same problems of scale exist; the techniques that we use to implement a small program cannot
usually be successfully used on a large programming project. The computer literature is full of examples of
software disasters that have occurred when a computer system has been started without afull understanding of the
problem that is to be solved.

2.2.1 Responsibilities

2.3

Since our earliest days we have all been told that we have responsibilities. Initialy, these responsibilities are very
simple, but as we grow older so they increase. A responsibility is a charge, trust or duty of care to look after
something. At an early age this can be as simple as keeping our room neat and tidy. In later life, the range and
complexity of items that we have responsibility for, increases dramatically.

A student for example, has the responsibility to follow a course of study. The lecturer has the responsibility of
delivering the course to the students in a clear and intelligible manner. The responsibilities of the student and
lecturer are summarized in tabular form below:

Responsibilities of a student Responsibilities of alecturer
Follow the course of study. Deliver the course.
Perform to the best of their ability | Set and mark the assessment for
in the exam/assessment for the the course.
course.
Attend the exam board for the
delivered course.

Software too has responsibilities. For example, atext editor has the responsibility of entering the user’s typed
text correctly into a document. However, if the text that is entered into the text editor is incorrect or meaningless,
then the resultant document will also be incorrect. It is not the role of the text editor to make overall decisions
about the validity of the entered text.

In early computing literature, a common saying was “Garbage in, garbage out”. Even though the software
package implements its responsibilities correctly, the results produced may be at least meaningless, at worse
damaging if used.

Objects

The world we live in is composed of many different objects. For example, a person usually has access to at least
some of the following objects:

° A telephone.
° A computer.
° A car.

Each object has its own individual responsibilities. For example, some of the responsibilities associated with
the above objects are:

Object Responsibilities

Telephone Establish contact with another phone point.
Convert sound to/from electrical signals.
Execute programs.

Provide atcp/ip connection to the internet.
Move

Go faster/slower

Turn left/right

Stop.

Computer

Car

A responsibility here, is a process that the object performs. For example, a car can move forwards or
backwards. However, the car has to be instructed by the driver to perform thistask. The object is passive, and only
performs an action when instructed to do so.

O M A Smith - May not be reproduced without permission

20 Softwaredesign
2.3.1 Thecar asan object

A car is made up of many components or objects. From a user’s perspective some of the major objects that make

up acar are:
) The shell or body of the car.
° Theengine. //CD:
) The gearbox. L7
° The clutch. O O
) The battery that provides electric power.

We can think of the body or shell of the car as a container for all the other objects, that when combined, form a
working car. These other objects are hidden from the driver of the car. The driver can, however, interact with
these objects by using the external interfaces that form part of the car shell. This arrangement of objects is
expressed diagrammatically using the UML notation in Figure 2.1.

1?]?%?1

Engine Gearbox | | Clutch Battery

Figure 2.1 Objectsthat make up acar.
In Figure 2.1 the following style of notation is used:

Engine Denotes an object. In this specific case the car engine.

Denotes aggregation. The engine contains 4 pistons.
Engine Note:

T 1 Denotes aggregation, the component B is

4 contained in the container A.

Piston Denotes composition, in addition the

component B is created and destroyed by the
container A.

By using this notation, we can express the ‘part of' relationship between objects. The engine, gearbox, clutch
and battery are ‘part of’ acar.

O M A Smith - May not be reproduced without permission

2.4

2.5

2.6

Softwaredesign 21

Theclass

In object-oriented terminology a class is used to describe all objects that share the same responsibilities and
internal structure. A classis essentially the collective name for agroup of like objects. For example, the following
objects all belong to the class car:

Corinna’'sred car Mike' ssilver car Paul’s blue car
TN T\ T\
O—0 O—0 O—0

Although the objects differ in detail, they all have the same internal structure and responsibilities. Each object
is an instance of the class Car . The notation for a class is slightly different from that of an object. The UML

notation for a class and an object areillustrated below:

A class An object (an instance of a class)

Ca Corinna's car

Note: The name of the object is underlined.

It is important to distinguish between a class and an object. A very simple rule is that objects usually have a
physical representation, whereas classes are an abstract concept.

M ethods and messages

A method implements a responsibility for a class. For example, some of the responsibilities for the class Car are
asfollows.

Responsibilities of the classCar

° Start/stop engine

o Go faster/slower 7 TN\
° Turn left/right L

° Stop. O O

An instance of the class Car is an object. By sending a message to the object a hidden method inside the
object (aresponsibility of the classCar) is invoked to process the message. For example, the driver of the car by
pressing down on the accelerator, sends the message ‘go faster’. The implementation of this is for the engine
control system to feed more petrol to the engine. Normally however, the details of this operation are not of
concern to the driver of the car.

Class objects

We have looked at a car's shell as a container for objects and can look at a laptop computer as a container for
several computing devices or objects. A laptop computer is composed of :

) The shell of the laptop, that has external interfaces of akeyboard, touch pad and display
screen.

Thelocal disk drive.

The network file system.

The CPU.

The sound and graphics chipset.

O M A Smith - May not be reproduced without permission

22

2.7

Software design

In this analysis, the networked file system is shared between many different laptops, each individual laptop
having access to the networked file system. In object-oriented terminology the networked file system is a class
object which is shared between all the notebooks.

The concept of a shared object is important as it allows all instances of a class to have access to the same
information. Thus, if one instance of a laptop computer creates a file on the network file system, the other
notebooks will be able to access the contents of thisfile.

This arrangement of objects for a laptop computer can be expressed diagrammatically as illustrated using the
UML notation in Figure 2.2. Unfortunately in UML there is no way to show diagrammatically that a classitemis
shared between many classes.

Lap top
ShAAE
1 * 1 1
Loca Disk Network Disk CPU Graphics

Figure 2.2 Objects that make up alaptop computer from auser’ s perspective.

Another interesting property of a class object, is that to access it you do not need an instance of the container
object. For example, the network file system can be used by devices other than the laptop computers.

I nheritance

A typical officewill usually contain at least the following objects:

) A telephone.
) A fax machine with atelephone hand set.
° A computer.

Each of these objects has their own individual responsihilities. For example, some of the responsibilities of
these office objects are:

Object Responsibilities
Telephone ® Establish contact with another phone point.
® Convert sound to/from electrical signals.
Fax machine with a ® Establish contact with another phone point.
telephone hand set ® Convert sound to/from electrical signals.
® Convert imagesto/from electrical signals.
Computer ® Execute programs.
® Provide atcp/ip connection to the internet.

Looking at these responsibilities shows that the telephone and fax machine share several responsibilities. The
fax machine has two of the responsibilities that the telephone has. We could say that a fax machine is a telephone
that can also send and receive images. Another way of thinking about thisis that the fax machine can be used asiif
it were only a telephone. This relationship between classes that represent all telephones and fax machines is
shown diagrammatically in Figure 2.3 using the UML notation. In this relationship a fax machine is inherited (or
formed from the components) of atelephone.

O M A Smith - May not be reproduced without permission

Softwaredesign = 23

Inheritance diagram Responsibilities:

Telephone Establish contact with another phone point.
Convert sound to/from electrical signals.

Fax machine

All the responsibilities of atelephone plus:
Convert images to/from electrical signals.

Figure 2.3 Relationship between atelephone and afax machine.

Note: The superclass (telephone) is the class from which a subclass (fax machine) i sinherited.
Inheritance requires you to take all the responsibilities from the superclass; you cannot selectively
choose to take only some. However, even though you inherit the responsibilities you do not need to use
them.

The inheritance relationship is an important concept in object-oriented programming as it enables new objects
to be created by specializing an existing object. In creating the new object, only the addition, responsibilities have
to be constructed. The development time for a new software object is reduced as the task of creating the inherited
responsibilities has already been done. This process |eads to a dramatic reduction in the time and effort required to
create new software objects.

2.8 Polymorphism

In acollection of different objectsif all the objects are capable of receiving a specific message then this message
may be sent to any object in the collection. The method executed when this message is received by an object will
depend on the type of the object that receives the message.

For example, in a group of individuals if you ask a person how to take part in their favourite sport, you will
probably get many different answers. In effect the message ‘How to take part in your favourite sport’ is
polymorphic in that the answer you get depends on the individual person you select to ask. A tennis player for
example, would give a different answer than a golfer.

2.9 Sdf-assessment

) Explain why the solution to a small problem may not always scale up to solve amuch larger and
complex problem.

° What isa“Responsibility” ?
) What are the responsibilities of:
° A video camera.
° Analarm clock.
) A traffic light.
) An actress playing the role of Olgar inthe Threesisters by Chekov.

) What is the rel ationship between an object, message and a method?

O M A Smith - May not be reproduced without permission

24 Softwaredesign

) What classes do the following objects belong to?
apartment cat crayon crystal dog
guineapig igloo house ink pen library
mansion officeblock pencil rabbit sheep

I dentify which classes are subclassed from other classes?

) I dentify several objects and classes around you at the moment. Can you find responsibilities that any
of the objects or classes have in common?

O M A Smith - May not be reproduced without permission

25

Ada introduction: Part 1

3 Adaintroduction: Part 1

This chapter looks at some simple Ada programs, and presents the basic control structures of the
language. The datatypes| nt eger and Char act er are used to introduce these structures.

3.1 Afirst Adaprogram

Thefirst program presented isasimple one that writesthe message* Hel | o Wor | d’ onto the user’ sterminal.

with Text 1o;
use Text_Io;
procedure Hello is

begi n
Put("Hello World"); New_Line;
end Hel |l o;
Note: The example programs in this book are shown with reserved words in bold to aid readability. As the

name suggests, reserved words can only be used for their intended purpose. Strange error messages
can occur when a reserved word isinadvertently used by the programmer as the name of an object in a
program. Reserved words are entered as normal text when writing a program. Section B.1, Appendix B
listsall the reserved words in the Ada programming language.

When compiled and run, this program will display on a user’sterminal the message:

Hello World

In the above program, the reserved words begi n and end are used to bracket the body of the procedure
Hel | o. In Ada, a procedure can be a self-contained program unit that may be independently compiled. In the
above example, the single procedure Hel | o forms a complete program that may be compiled and run by an
appropriate Ada compiling system.

The statement Put (" Hel | o Wor | d") ; isresponsible for outputting the greeting to the terminal. Used in
conjunction with New_Li ne, which outputs a new line character to the terminal, these procedures are defined
and implemented by the library package Ada. Text _1 o.

Note: The end keyword is followed by the name of the procedure, in this example hel | owor | d. The
compiler checks for thisto ensure that the procedure's extent agrees with the programmer’s view.

One of the important conceptsin Adaisthe idea of encapsulating items together to form a package which may
be re-used in other programs. The library package Ada. Text _1 o is provided on Ada systems to allow the input

and output of textual information to and from the user's program. This library package is introduced to a
procedure by means of the statementswi t h Ada. Text _| 0; use Ada. Text _| o; the details of which will

be explained | ater.

O M A Smith - May not be reproduced without permission

26 Adaintroduction; Part 1

Figure 3.1 illustrates the components of an Ada program.

with Text | o; ecify package Ada.Text_loisto be

use Text_lo; used in the procedure

Ero_cedure Hello is Declaration and start of procedure
egrn helloworld

C Put ("Hello World"); New_Line;

)4——Executed statements

(end Hel | o;)4_/-End of procedure helloworld

Figure 3.1 Components of an Adaprogram.

3.2 Thecaseof identifiersin a program

In Ada, the case of characters used in reserved words and identifiers is unimportant; the compiler will take begi n
Begi n or even BeG N to mean exactly the same thing. The only place where the case of a letter mattersisin
string and character constants. For example, the above program, could have been written as:

Wth Text _|I G
Use Text | O
Procedure HELLO i s

Begi n
PUT("Hell o World"); NEW.LI NE;
End hel | o;

3.3 Format of an Ada program

In Ada, like in many other languages, white space is used mainly as away of neatly laying out a program so that
everyone, including the author, may clearly see the structure and purpose of the statements. There are many
conventions for the layout of an Ada program and there are even programs which will reformat an Ada program
for you.

The program illustrated above could have been written as:

with Text _lo; use Text_lo; procedure Hello is begin
Put ("Hello World"); New_Line; end Hello;

although it is now more difficult to see exactly what the code is supposed to achieve. The only place where white
space character(s) or a new line are needed, is between words that contain alphabetic characters. Naturally, any
strings that contain white space characters will be output containing these white space characters. However a
newline character is not allowed in astring literal.

A line of an Ada program can be up to 200 characters long and implementors may, if they wish, allow longer
lines. A consequence of this is that names of items in an Ada program are considered unique if the first 200
characters are different.

3.3.1 Variable names

A variable name must start with a letter and can then be followed by any number of letters and digits and the
underscore character. However, two underscore characters cannot occur next to each other and an underscore
character must not start or finish avariable name.

O M A Smith - May not be reproduced without permission

Adaintroduction: Part1 27

3.3.2 Comments

In Ada, comments may be introduced into a program by preceding the remainder of the line containing the
comment, with two - characters. For example, a possible comment to the above program might be:

-- This programwites the nessage
-- "Hello Wrld" to a users term nal

3.4 A larger Ada program

A program to produce a countdown is shown below. In this program, various constructs which affect the flow of
control areintroduced.

with Ada. Text _I o; --Wth package Text _lo
use Ada. Text _| o; --Use conponents
procedure Main is
Count : Integer; --Decl arati on of count
begi n
Count := 10; --Set to 10
whil e Count > 0 | oop --loop while greater than 0O
if Count = 3 then --If 3 print Ignition
Put ("I gnition"); New_Line;
end if;
Put (I nteger'Inage(Count)); --Print current count
New_Li ne;
Count := Count - 1; --Decrenment by 1 count
delay 1.0; --Wait 1 second
end | oop;
Put ("Bl ast off"); New_Line; --Print Blast off
end Mai n;

In this program an integer variable count isdeclared which contains the current value of the countdown. This
isachieved with the declarationCount : | nt eger;.TheAdastatementdel ay 1. 0; causesa pause of one
second in the program.

Note: Declarations of items are allowed in any order in Ada 95.
I nteger’ I mge(Count) delivers count as a character string. This is necessary as the
package Ada. Text _| o only implementsinput and output on a character or a string.

When run, this program will produce the following output:

0

8

1
9
7
6
5
4
g
3
2
1
|

Bl ast of f

Thisissimilar to the commentary used during the take-off procedures of early space missions.

O M A Smith - May not be reproduced without permission

28 Adaintroduction; Part 1

3.5 Repetition: whi | e

while Count > 0 | oop

--loop while greater than 0

Repeat ed st atenents

end | oop;

The above construct repeatedly executes the statements between | oop and end | oop while the condition
count > Oistrue.
Note: The mandatory end | oop terminatesthewhi | e | oop. In Ada, most constructs are terminated by
a mandatory termination keyword(s). This prevents the kind of errors that can occur in other
languages when an extra statement is added in the belief that it forms part of the construct. It also
allows the compiler to check that the user has constructed a program correctly by matching the start
and end of each construct.

3.6 Sdection: i f

if Count = 3 then --1f 3 print Ignition
Put ("I gnition"); New_Line;
end if;

Thei f statement allows a statement or statements to be executed only if the condition is true. In the above
example, the statementsPut ("1 gni ti on"); New_Li ne; will only be executed when count is equal to 3.
Note: The mandatoryend i f terminatesthei f statement.

Anel se part may also be included, in which case statement or statements which follow it are only obeyed if
the condition isfalse. For example:

if Count = 3 then

Put ("Count is 3"); New_Line;
el se

Put ("Count is not 3"); New_Line;
end if;

Note: Theelsepart of ani f statement is optional. However, if it is included it must be followed by at least

one statement.

The rather inelegant nestedi f structure below:

if Count = 3 then
Put ("Count is 3"); New_Line;
el se
if Count = 4 then
Put ("Count is 4"); New_Line;
el se
Put ("Count is not 3 or 4"); New_Line;
end if;
end if;

O M A Smith - May not be reproduced without permission

Adaintroduction: Part1 29

can be rewritten using the followingel si f construct:

if Count = 3 then
Put ("Count is 3"); New_Line;
el sif Count = 4 then
Put (" Count is 4"); New_Line;

el se
Put ("Count is not 3 or 4"); New_Line;
end if;
Note: For the statementsin the el se part to be obeyed, all the conditionsinthei f and el si f parts must

befalse.
There may be many elsif componentsin anif statement, but only one else.

3.7 Other repetition constructs
3.7.1 for

In Ada, aloop may be constructed in which a variable is varied by one unit between two values. For example, the
code to print out the numbers from 1 to 10 can be written using af or statement asfollows:

for Count in 1 .. 10 |oop --count decl ared here
Put (I nteger' |l mage(Count));

end | oop;

New_Li ne;

When run, thiswould produce:

12345678910

Note: Thevariable count isdeclared by the f or statement and is visible only for the extent of the f or loop.
Itisaread only item and therefore cannot be written to.

The values may be stepped through in reverse order by inserting the keywordr ever se after the keyword i n.

For example:
for Count in reverse 1 .. 10 |oop
Put (I nteger' |l mage(Count));
end | oop;
New_Li ne;

When run, thiswould produce:

10987654321

O M A Smith - May not be reproduced without permission

30 Adaintroduction; Part 1

Note: The range must evaluate to a possible list of values for the body of thef or | oop to be executed. For
example:

for Count I1n reverse 10 .. 1 [|oop
Put (I nteger' | mage(Count));
end | oop;

would not execute the body of thef or loop.

In the program below the two loops produce identical results:

with Ada. Text _| o;
use Ada. Text _I|o;
procedure Main is

Count : Integer; --count as |nteger object
Count _To : constant Integer := 10; --integer constant
begi n
Count := 1;
whi | e Count <= Count _To | oop --Wile | oop

Put (I nteger' I nmage(Count));
Count := Count + 1;
end | oop;

New_Li ne;

for Count in 1 .. Count_To |oop --count decl ared here

Put (I nteger' | mge(Count));
end | oop;

New_Li ne;

end Mi n;

When run, thiswould produce:

123456789 10
12345678910

Note: For thef or loop a new count is declared which isvisible only for the extent of the loop.

3.7.2 loop

Another way of writing the above loop is by using the infinite looping construct | oop end | oop. As this

construct repeats for ever, an exit mechanism is provided to short-circuit the loop. This escape mechanism is the
exi t statement, which causes an immediate exit from the loop. Older programmers will recognise this as a

restricted version of the goto statement. The loops seen earlier in Sections 2.5 and 2.7.1 could have been
expressed using al oop construct asfollows:

O M A Smith - May not be reproduced without permission

Adaintroduction: Part1 31

wi th Ada. Text _| o;
use Ada. Text _lo;
procedure Main is
Count . Integer; --count as |nteger object
Count _To : constant Integer := 10; --integer constant
begi n
Count := 1;
| oop
Put (I nteger' |l mage(Count));
exit when Count = Count_To; --Exit | oop when ...
Count := Count + 1;
end | oop;
New_Li ne;
end Mai n;

When run, thiswould produce;

123456738910

The exit from the | oop is accomplished by adding a condition to the exi t statement, in this case when
Count = Count_To.

Note: Thel oop construct can be used when it is necessary to execute the code at |east one-time.
An exit statement may be used to exit fromawhile loop and afor loop.

3.8 Other sdection constructs
3.8.1 case

The previous series of i f then el se statements in Section 2.6 can be replaced by the following case
statement:

case Count is

when 3 => Put (" Count is 3"); New_Line;

when 4 => Put("Count is 4"); New_Line;

when others => Put("Count is not 3 or 4"); New_Line;
end case;

In Ada, acase statement must take account of all values that the control variable may take: hence the when
ot her s component in the above statement. Had it not been present, then a compile-time error would have been
generated.

O M A Smith - May not be reproduced without permission

32 Adaintroduction; Part 1

A character variable may be declared which can hold a character from the Ada character set. The following
case statement would print out a classification of the character held in the object Ch.

Ch:="'a
case is
when '0" | "1' | "2" | "3 | "4
‘5" | ‘6" | ‘7" | '8 | "9 =>
Put ("Character is a digit");
when 'A" .. 'Z'" =>
Put ("Character is upper case English letter");
when 'a' .. 'z' =>
Put ("Character is |ower case English letter");
when ot hers =>
Put ("Not an English letter or digit");
end case;
New_Li ne;

In this case statement two ways of combining case labels are introduced.

Case component Description | Explanation

| or For example, ' 0" | '1' will match the
character ' 0' or the character ' 1'
Range For example, ' A" .. 'Z' will match any

character in the range Capital A to Capital Z.

The fragment of program code combined with appropriate declarations and compiled would produce when
run:

Character is | ower case English letter

3.9 Input and output

In Ada, input and output are performed by a variety of standard packages. The full implications of the package
construct are discussed fully in Chapters 5 and 17 which describe in detail the I/O packages. For the moment, the
discussion about input and output will concentrate solely on character data.

Text isoutput to theterminal using the put procedure. This procedure may take a formal parameter which is
either a character or a character string. For example, to output hel | o the user could write either:

Put("Hello");

or

Put('h'); Put('e); Put('l'); Put('l"); Put('o")

Note: Astring is use to represent a sequence of characters. A string is enclosed in " " whilst a character is
enclosed in "' '. In this way the compiler can distinguish between a character 'A'and a string of a single
character "A".

O M A Smith - May not be reproduced without permission

Adaintroduction: Part1 33

To input acharacter into the variablech of type Char act er , the user could write:

get(ch);

A simple program to copy itsinput, character-by-character to the output source, could be asfollows:

wi th Ada. Text | o;
use Ada. Text _lo;
procedure Sinple_Cat is

Ch : Character; --Current character
begi n
while not End_O _File |oop --For each Line
whil e not End_Of _Line |oop --For each character
Get (Ch); Put(Ch); --Read / Wite character
end | oop;
Ski p_Li ne; New_Li ne; --Next line / newline
end | oop;

end Si npl e_Cat ;

The above program uses the following input and output functions or procedures.

Function/Procedure Effect

End O _File Delivers true when the end of the file is reached,
otherwiseit deliversfalse.

End_O _Line Delivers true when all the characters have been read

from the current input line, otherwiseit deliversfalse.
NB. This does not include the new line character.

Ski p_Li ne Positions the input pointer at the start of the next line.
Any information on the current line is skipped.
New _Li ne Write the new line character to the output stream

NB. On some systems new line is represented by two
characters when output.

If compiled to the executablefile Si npl e_Cat , the same program could be run on a Unix or MSDOS system
to implement a simple software tool to print the contents of the file about _ada. To list the contents of the file
about _ada totheterminal using an MSDOS system, a user could type:

Si npl e_Cat < about _ada

Note: On a DOS or Unix system the command Si npl e_Cat < about_ada runs the program
Si nmpl e_Cat takingitsinput fromthefileabout _ada.

3.10 Accessto command line arguments

When a program is executed it is possible to access any arguments given on the same line as the program name.
For example, the following program echo has two command line arguments:

echo Hello there!

O M A Smith - May not be reproduced without permission

34 Adaintroduction; Part 1

If the program echo is compiled with the package Ada. Command_Li ne then the programmer has available the
following function calls:

call of function Returns

Ar gunent _Count The number of command line arguments. In this case,
two.

Argunent (1) A string representing the first command line argument.
Inthiscase“ Hel | 0”.

Argunment (2) A string representing the second command line
argument. Inthiscase“t here! ”.

Note: It would be an error detected at run-timeto accessar gunent (3) .

The code for the program echo is as follows:

wi th Ada. Text 1o, Ada.Command Li ne;
use Ada. Text | o, Ada. Conmand_Li ne;
procedure Echo is
begi n
for I in1 .. Argunment_Count loop --For each argunent
Put (Argunment (1)); -- Print it
if I /= Argurment _Count then -- |If not |ast
Put (" "); -- Print separator
end if;
end | oop;
New_Li ne;
end Echo;

Note: See how the package Ada. Command_Li ne hasbeen used here.
3.10.1 Putting it all together

If compiled to the executablefile echo, the program could be run on a Unix or MSDOS system to implement the
command echo asfollows:

% echo Hell o there!

Which when run would write:

Hell o t here!

3.11 A better cat program

By using, the package Ada. Command_I i ne a better version of the cat program can be written. In this new
version thefilesto belisted to the terminal are specified after the executable program name.
The following procedures and functions are used to control the reading of datafrom afile.

Function/Procedure Effect

Open Opens an existing file. A file descriptor to this file is
returned as the result. A file descriptor is of type:
Fi | e_t ype inthepackage Ada. Text _1o.

Cl ose Closethe openfile.

O M A Smith - May not be reproduced without permission

Adaintroduction: Part1 35

Function/Procedure Effect

End_Of _File As previously described but this time the effect is not
End O _Line on the normal input stream, but on the input of data
Ski p_Li ne from afile. The extra first parameter denotes the file
Get descriptor attached to thefile.

This new program is as follows:

wi th Ada. Text 1o, Ada.Command_Li ne;
use Ada. Text | o, Ada. Conmand_Li ne;
procedure Cat is
Fd : Ada.Text _lo.File_Type; --File descriptor
Ch : Character; --Current character
begi n
if Argurment_Count >= 1 then
for I in 1 .. Argunent_Count |oop --Repeat for each file
Qpen(Fil e=>Fd, Mode=>In_Fil e, --Qpen file
Nanme=>Ar gurent (1));
while not End_O _Fil e(Fd) | oop --For each Line
whil e not End_O _Line(Fd) loop --For each character
Get (Fd, Ch); Put(Ch); --Read / Wite character
end | oop;
Ski p_Li ne(Fd); New_Li ne; --Next line / new line
end | oop;
Cl ose(Fd); --Close file
end | oop;
el se
Put ("Usage: cat filel ... "); New_Line;
end i f;
end Cat;

3.11.1 Putting it all together

Which when compiled to the executablefile cat can be run asfollows on an MSDOS or Unix system:

%cat filel.txt file2.txt

Note: If a file does not exist then the program will fail with an uncaught exception condition. Chapter 12
describes how such exceptional conditions may be caught and processed in a program.

3.12Charactersin Ada

In Adathere are two distinct types used for holding characters. These are:

Type An instance of thistype

Char acter Can hold 256 distinct characters.
Characters with internal code 0-127 are from the ASCI|
character set. The ASCII standard is equivalent to SO
8859.

W de_Char acter Can hold 65336 different characters.
The characters are defined in SO 10646 BMP

Note: Many computer systems use the ASCI| character set to represent data held internally or transmitted.
In Ada 83 variables of type Char act er are restricted to holding only 128 different character values

compared to Ada 95's 256.

O M A Smith - May not be reproduced without permission

36 Adaintroduction; Part 1

These types are defined as enumeration types in the package standard. A consequence of this is that characters
like ‘A’ are enumerations of both Char act er and W de_char act er . The effect is that a programmer cannot

write:

if A ="A then end if;

as the character ‘A’ could belong to the type Char act er or W de_Char act er which the compiler cannot
resolve from the statement.

3.13 Self-assessment
° What is the purpose of the package Ada. Text _|1 0?
° What are the disadvantages of the exit statement?
° Why did the designers of Ada make the control variablein a for loop read only?
° Why might the omission of when ot her s inacase statement cause a compile-time error?
° Caneveryl oop end | oop statement be expressed asawhi | e end | oop statement which

does not have anexi t statement? For example, the following programiillustratesal oop end
| oop:

with Ada. Text | o;
use Ada. Text _| o;
procedure Main is
Count . Integer; -- Variabl e
Count _To : constant Integer := 10; -- Integer constant
begi n
Count := 1;
| oop
Put (I nteger' | mage(Count));
exit when Count = Count To; -- Exit | oop when ...
Count := Count + 1;
end | oop;
New_Li ne;

end Main;

Isthe converse true? Explain your answer.

[What are the mgjor differences discussed so far between Adaand other programming languages
known to you?

° Why might an Ada 95 program using aChar act er variable not compile using an Ada83 compiler?

° How may command line arguments be accessed from a program?

O M A Smith - May not be reproduced without permission

Adaintroduction: Part1 37

3.14 Exercises

Construct the following programs:

Numbers
A program to print the first 20 positive numbers (1, 2, 3, etc.).

Timestable
A program to print out the 8 times table so that the output isin the following form:

8 *1 = 8
8 * 2 = 16
8 * 3 = 24
8 * 12 = 96
Series

A program to print out numbersintheseries112 358 13... until the last term is greater then 10000.

Character table
A program to print the characters represented by the numbers 32 to 126.

Hint:
If avariable nunber isof typel nt eger thenChar act er' Val (nurmber) will deliver the
character which is represented internally by the value contained in number.

Table
A program to print out the square, cube and 4th power of thefirst 15 positive numbers.

O M A Smith - May not be reproduced without permission

Ada introduction; Part 1

4 Adaintroduction: Part 2

4.1

4.2

This chapter looks at declarations and use of scalar dataitems in Ada. One of Ada's key contributions to
programming is the ability to declare dataitems that can only take a specific range of values. Ada’s strong
typing ensures that many errorsin a program will be detected at compile rather than run-time.

I ntroduction

So far, only objects of type | nt eger or Char act er have been introduced. An | nt eger object stores a
number as a precise amount with no decimal places. The exact range of values that can be stored is
implementation defined. A user can find out this range by employing the attributes' Fi r st and ' Last on the
type | nt eger . In addition the attribute * Bi t s returns the size in bits of an | nt eger object. The following
program prints these attributes for anl nt eger type.

with Ada. Text |o0; use Ada. Text |o;

procedure Main is

begi n
Put ("Smal | est Integer ");Put(Integer'|Inage(lnteger' First)); New_Line;
Put ("Largest Integer ");Put(Integer'lmage(lnteger'Last)); New Line;
(Fj’u}vg'_'l nt eger (bits) ");Put(Integer'lnmage(lnteger'Size)); New_Line;

en in;

Note: Theattribute' Fi r st ispronounced ‘tick first'.

When compiled and run on two different machines, this would produce:

Machine using a 16 bit word size Machine using a 32 bit word size
Sl | est integer -32768 Sl | est integer -2147483648
Largest integer 32767 Largest integer 2147483647
Integer (bits) 16 Integer (hits) 32

Thetype Fl oat

Aninstance of thetypel nt eger holds numbers to an exact value. In the solution of some problems the numbers
manipulated will not be an exact value. For example, a person's weight is 80.23 kilograms. The data type Fl oat
elaborates an object which can hold a number which has decimal places. Thus in a program a person's weight can
be held in the objectwei ght which is declared as follows:

Weight : Float := 80.23;

A Fl oat is implemented as a floating point number. A floating point number holds a value to a specific
number of decimal digits. This will in many cases be an approximation to the exact value which the programmer
wishes to store. For example, a 1/3 will be held as 0.333 ... 33. The following table shows how various numbers
are effectively stored in floating point form to 6 decimal places:

Number Scientific notation Floating point form
80. 23 0.8023 * 102 +802300 +02
0. 008023 0.8023 * 10" 2 +802300 -02
0. 333333 0.333333 * 100 +333333 +00

O M A Smith - May not be reproduced without permission

Adaintroduction: Part2 39

Note: In reality the floating point number will be held in binary.

The main consequence of using a floating point number is that numbers are held to an approximation of their
true value. Calculations using floating point numbers will usually only give an approximation to the true answer.
However, in many cases this approximation will not cause any problems. An area where this approximation will
cause problemsis when the value represents a monetary amount.

The attributes ' Fi rst,' Last and ' Si ze may also be applied to objects of type Fl oat . In addition the
attribute’ Di gi t s returnsthe precision in decimal digits of anumber stored inaFl oat object. For example, the
following program:

with Ada. Text _| o;
use Ada. Text |o;
procedure Main is
begi n
Put ("Smal | est Float ");
Put(Float'Imge(Float' First)); New_Line;
Put ("Largest Float ");
Put (Float'|mage(Float'lLast)); New Line;
Put ("Float (bits) ");
Put (Integer'Inmage(Float'Size)); New_Line;
Put ("Float (digits) ");
Put (Integer'lmge(Float'digits)); New_Line;
end Mai n;

Note: Fl oat ' | mage deliversastring representing a floating point number in scientific notation.
when compiled and run on two different machines would produce:

Machine using a 32 bit word size [Machine using a 64 bit word size

Smal T est Float -3.40282E+038 Smal Test Float -1.79769313486232E+308
Largest Float 3.40282E+038 Largest Float 1.79769313486232E+308
Fl oat (bits) 32 Fl oat (bits) 64
Float (digits) 6 Float (digits) 15

4.2.1 Other Integer and Float data types

4.3

Some implementations of Ada may provide data types that offer a greater precision than the in-built types of
I nteger and Float. If these are provided they will be caled Long I nteger, Long Fl oat,
Long_Long_I nt eger etc.

New data types

Using an object of type | nt eger to hold numeric values may be a useful approach, but it does not lead to a
program that is machine independent. For example, during its execution a program could create values which
were not containable in a particular machine's | nt eger object. If this happened, then the program would fail
with arun-time error of ‘Constraint _Error’.

Ada provides an elegant solution to this problem. It allows a user to define a new data type, which has a
specific range of values. For example, the following declaration defines a new data type Di st ance which will
hold the distance between two places:

type Distance is range 0 .. 250_000;

Note: If the compiler cannot provide an object which can hold such a range, a compile-time error message
will be generated.

O M A Smith - May not be reproduced without permission

40 Adaintroduction; Part 2

Di st ance isanew type, instances of which may not be mixed with instances of other types. The following
table shows some examples of type declarationsin Ada.

Type declaration An instance of T will Declare

type Tisrange 0 .. 250 _000; An object which can hold whole numbersin
therange 0 .. 250 000.

type T is digits §; An object which can hold afloating point

number which has a precision of 8 digits.
type T is digits8range 0.0 .. 10.0; [An object which can hold afloating point
number which has a precision of 8 digits and
can store numbersin therange 0.0 .. 10.0.

4.3.1 Type conversions

To convert between compatible scalar types the type name of the required type is used to convert an object to the
required type. For example, the following program converts an object of type Appl es into an object of type
French_Appl es.

procedure Main is

type Appl es is range 0 .. 100;

type French_Apples is range 0 .. 100;

Nunber . Appl es;

Number _From France : French_Appl es;
begi n

Nunber : = 10;

Nurber _From France : = French_Appl es(Number);
end Mai n;

It is, however, up to the programmer to determine whether the conversion is meaningful. Conversion,
however, can only take place between types that are compatible.

4.3.2 Universal integer

To avoid tedious type conversion when dealing with constants, Ada has the concept of a universal integer. The
compiler will automatically convert a universal integer to an appropriate type when used in an arithmetic
expression. In Ada all integer numeric constants are regarded as being of type universal integer. Likewise al
floating point constants are regarded as a universal float.

4.3.3 Constant declarations

To make a program more readable, all values other than 0 or 1 should normally be given a symbolic nhame. This
helps to improve the readability of a program and allows the programmer to change the value by means of asingle
textual change. For example, the capacity of a car park could be described as:

Max_Par ki ng_Spaces: constant := 100;

This describesMax_Par ki ng_ Spaces as auniversal integer. However, if the declaration had been:

Max_Par ki ng_Spaces: constant Parki ng_Spaces : = 100;

then Max_Par ki ng_Spaces would be aconstant of type Par ki ng_spaces.

Note: The latter declaration will restrict the places where Max_Par ki ng_Spaces can be used to only
those places where a value of type Par ki ng_Spaces can occur.

O M A Smith - May not be reproduced without permission

4.4

4.5

4.6

Adaintroduction: Part2 41

Modified countdown program

The countdown program shown earlier in Section 3.4 can be rewritten, restricting count to the values 1 to 10 as
follows:

with Ada. Text _Io;
use Ada. Text _| o;
procedure Main is
type Count_Range is range 0 .. 10;
Count : Count_Range := 10; --Declaration of count
begi n
for Count in reverse Count_Range | oop
if Count = 3 then --1f 3 print Ignition
Put ("I gnition"); New_Line;
end if;
Put (Count Range' | mage(Count)); --Print current count
New_Li ne;
Del ay 1.0; -- Wit 1 second
end | oop;
Put ("Bl ast off"); New_Line; --Print Blast off
end Mai n;
Note: Even though count isof type Count _r ange, it can be compared with the integer constant 3.

The use of the type Count _Range in the | oop statement. This confines the loop to the range of
values that an instance of Count _Range can take.
The use of

Count _Range' | mage(Count)
to deliver a character representation of the contents of count. Remember count is of type
Count _Range.

Input and output in Ada

One of the obstacles in writing programs in Ada is the complexity involved in outputting integer and floating
point numbers. To simplify this process Ada 95 provides the following packages:

° Ada. I nteger_Text _lo for input and output of integer numbers.
° Ada. Fl oat _Text _lo for input and output of floating point numbers.
° Ada. Text _lo for input and output of characters and strings.

Chapter 18 describes how specific packagesin AdaTex_lo are instantiated to output instances of other integer
and floating point types.

The package Ada. Fl oat _Text | o

The package Ada. FI oat _Text _| o isused to input and output floating point numbers.

O M A Smith - May not be reproduced without permission

42 Adaintroduction; Part 2

4.6.1 Output of floating point numbers

A floating point number is output using the overloaded procedure Put , though by default this displays the number
in scientific notation. Extra parameters to Put are used to control the output form of the floating point number.
These parameters are used together or individually. The main parameters to control the format are named For e,
Aft and Exp. For example, to output the contents of the FI oat object Numthat contains 123.456 the following
versions of Put may be used:

Put statement Output Notes
Put (Num); 1. 23456E+02 |1
Put (Num Fore=>4, Aft=>2, Exp=>0); 1.23 2
Put (Num Fore=>4, Aft=>2, Exp=>3); 1. 23E+02 3
Note: Section C.5, Appendix C contains a description of the package Ada. Text _| o and shows other forms
of the put statement. Section 5.9 describes in more detail how parameters to a procedure or function
may be named.
1 Scientific notation by default.
2 Aft =>2 Number of places after the decimal point.
Fore =>4 Number of places before the decimal point.
Thisincludes any sign character such as- .
Exp =>0 No exponent hence non scientific notation.
3 Exp =>3 Scientific notation with three places for the exponent.

Thisincludes any sign character such as- .
4.6.2 Input of floating point numbers

A floating point number isinput using the overloaded procedure Cet asfollows:

Get statement Notes
Get(Num); 1
Get (Num W dt h=>5 2
Notes:
1 Reads a floating point number fromthe input source. It isan error to read an integer number. This
procedure will skip any leading white space characters before reading the floting point number.
2 Wdth=> 5

Number of characters input when constructing the floating point number. If aline terminator is
encountered no more characters are input to form the number

4.7 ThepackageAda. I nteger Text 1o
The package Ada. | nt eger _Text _| o isused toinput and output floating point numbers.
4.7.1 Output of integer numbers

.In the output of an integer number the parameters base and wi dt h can be used together or individually to
control the format of the output. For example, to output the contents of the | nt eger object Numwhich contains
42 the following versions of put may be used:

The put statement Output Notes
Put (Num); 42 (1
Put (Num Base=> 8, Wdth=>5); 8H52# 2
Notes:

1 Output in the default field width.

2 Base =>8 Output base: in this case octal.

W dth =>5 Field width for the number.

O M A Smith - May not be reproduced without permission

Adaintroduction: Part2 43

4.7.2 Input of integer numbers

4.8

Aninteger isinput using the overloaded procedure Get asfollows:

Theget statement Notes
Get(Num); 1
Get (Num W dt h=>5 2
Notes:
1 Reads an integer number from the input source. .This procedure will skip any leading white space
characters before reading the integer number.
2 Wdth=> 5

Number of charactersinput when constructing the integer number. If aline terminator is encountered
no more characters are input to formthe number.

Conversion between Fl oat and | nt eger types
Because Fl oat and | nt eger are two separate types, instances of these types may not be mixed. This initially

can cause problems as often we informally mix whole numbers and ‘floating point numbers' together. For
example, the following program prints a conversion table for whole pounds to kilograms:

with Ada. Text _| o, Ada.lnteger_Text_l|o, Ada.Float_Text_Io;
use Ada.Text_lo, Ada.Integer_Text_|lo, Ada.Float_Text _|o;
procedure Main is

begi n
for I inl1l .. 51o0p
Put(I); Put(" Pounds =");

Put (Float (1) / 2.2046, Exp=>0, Aft=>2);
Put (" Kilograns"); New_Line;

end | oop;
end Mai n;
Note: The explicit conversionFl oat (1) convertsthel nt eger object| to aninstance of aFl oat .

When run, thiswill give the following output:

1 Pounds = 0.45 Kil ograns
2 Pounds = 0.91 Kil ograns
3 Pounds = 1.36 Kil ograns
4 Pounds = 1.81 Kil ograns
5 Pounds = 2.27 Kilograns

The conversion process may be used in reverse to convert a floating point number to an integer form. The
effect of this conversion isto round away from zero, so that:

Fl oat objectf contains I nteger (f) delivers
1.5 2
1.3 1
-1.5 -2
-1.3 -1

O M A Smith - May not be reproduced without permission

44 Adaintroduction: Part 2
4.9 Typesafety in a program

By using the type mechanism, errorsin a program can be detected at compile-time. For example, a program which
processes distances in miles and kilometres can be made safer by defining separate types for miles and kilometres
asfollows:

type Mles is digits 8 range 0.0 .. 25_000.0;
type Kilonetres is digits 8 range 0.0 .. 50_000. O;

Note: The range of values is adequate to accommodate any distance between two points on the earth.

A program which processes distances between cities could be defined as follows:

with Ada. Text _| o, Ada.Fl oat_Text_Ilo;
use Ada.Text |o, Ada.Fl oat_ Text | o;
procedure Main is

type Ml es is digits 8 range 0.0 .. 25_000. 0;
type Kilonetres is digits 8 range 0.0 .. 50_000. O;
London_Pari s . Mles;
Pari s_Ceneva . Kilonetres;
London_Pari s_Geneva: Kil onetres;
begi n
London_Paris := 210.0; --Mles
Paris_Geneva := 420.0; --Kilonetres

London_Pari s_Ceneva : =

Kil ometres(London_Paris * 1.609 344) + Paris_Ceneva,
Put ("Di stance | ondon - paris - geneva (Kms) is ");
Put (Fl oat (London_Paris_Geneva), Aft=>2, Exp=>0);

New_Li ne;
end Main;
Note: There is an explicit conversion of a distance in miles to kilometres using the type conversion

kil ometres(london_paris * 1.609 344).
The contentsof London_Pari s_Geneva hasheen convertedtoaFl oat so that it can be printed
using the package Ada. Fl oat _Text | o. Chapter 17 describes how user defined types may be
output.
The parameterstoput when outputting a floating point number control the number of decimal places
output and the format of the number. Section C.5, Appendix C lists the parameters used in outputting
numbers.

If by accident a programmer wrote:

London_Paris_Geneva := London_Paris + Paris_Geneva;

then the Ada compiler would detect a type mismatch at compile-time. London to Paris is in miles and Paris to
Genevaisin kilometres.

4.10 Subtypes

The type mechanism can on occasion, be restricting as a programmer wants the range checking provided by the
type mechanism but does not want to have to keep explicitly performing type conversions. A subtype of a type
provides the range checking associated with a type, but instances of a type and its subtypes may be freely mixed
in expressions.

O M A Smith - May not be reproduced without permission

Adaintroduction: Part2 45

For example, the speed of various forms of transport can be defined using the type and subtype mechanism as

follows:
type Speed_Mh is range 0 .. 25_000;
subt ype Trai n_Speed is Speed_Mh range 0 .. 130;
subt ype Bus_Speed is Speed_Mph range 0 .. 75;

subtype Cycling Speed is Speed _Mh range 0 .. 30;
subtype Person_Speed is Speed_Mh range 0 .. 15;

A subtypeis derived from an existing type and constrains the values that can be assigned to an instance of the
subtype. The compiler will enforce this constraint either by performing a compile-time check or by generating
code to check the constraint at run-time. Of course, the subtype inherits all the operations that can be performed
on an instance of the type.

Instances of atype and its subtypes may be freely mixed in arithmetic, comparison and assignment operations.
For example, using the above type and subtypes declarations for the speed of various forms of transport, the
following code can be written:

wi th Ada. Text | o;
use Ada. Text _|o;
procedure main is
-- Type and subtype declarations for speeds
TO715 : Train_Speed; --07:15 Brighton - London

B0720 : Bus_Speed,; --07:20 Brighton - London

begi n
TO715 := 55; --Average speed Brighton - London (Train)
B0720 := 35; --Average speed Brighton - London (Bus)

if TO715 > B0O720 then
Put ("The train is faster then the bus");

el se
Put ("The bus is faster then the train");
end if;
New_Li ne;
end Mai n;
Note: It isof course an error to mix instances of subtypes which are derived from different types.

4.10.1 Typesvs. subtypes

Criteria Types Subtype
Instances may be mixed with | only instances of the | only instances of atype
sametype and subtypes derived
from the type
May have a constraint Yes Yes

4.11Moreon types and subtypes

In Adaonly subtypes have names. The consequence of thisisthat the declaration:

type Speed_Mh is range 0 .. 25_000;

O M A Smith - May not be reproduced without permission

46 Adaintroduction; Part 2

is effectively treated as:

type Anonynous is -- inplementation defined
subt ype Speed_Mh is Anonynous range 0 .. 25_000;

The anonymous type from which Speed_Mh is derived can be obtained by using the attribute ' Base. The
attribute' Base refers to the anonymous base type from which atype or subtype has been originally derived. For
example, the range of the anonymous type from which Speed_Moh is derived is printed with the following code:

Put (" The base range of the type T2 is ");
Put(Integer (T2 Base' First)); Put(" ..");
Put (| nteger (T2 Base' Last)); New Line;

Note: An instance of the base type can be declared by using the type declaration Speed_nph' Base.
4.11.1 Root_Integer and Root_Real

The model of Ada'sarithmetic is based on the anonymoustypesRoot _| nt eger and Root _Real . These types

are in effect used as the base types from which all integer and real types are derived. The following table
summarizes the properties of Root _| nt eger and Root _Real .

Root type Range/ precision
Root _I nt eger System M n_Int .. System Max_Int
Root _Real System Max_Base _Digits

All the arithmetic operators are defined to operate on, and deliver instances of, their base type.

4.11.2 Type declarations: root type of type

In declaring atype for an integer, there are two distinct approaches that can be taken. These are illustrated by the
two type declarations for an Exam_mar k.

type Exam Mark is new Integer range O .. 100;
type Exam Mark is range 0 .. 100;

The first declaration defines Exam Mar k to be a type derived from | nt eger with a permissible range of
values 0 .. 100. Its base type will consequently be that of r oot _i nt eger as Exam Mark is derived from
I nt eger.

The second declaration defines Exam _Mar k to be a type, the values of which are in the range 0 .. 100. It is
derived from Root _I nt eger but the base range of the type does not have to be that of Root _| nt eger . Some
implementations may implement an instance of this type and its base type in asingle byte.

Thefollowing table illustrates the base type of the types described above:

type Exam_Mark is Basetype Minimum range of root
type
new I nteger range 0 .. 100; |Root_Integer | System M n_Int
System Max_I nt
range 0 .. 100; Implementation | Implementation defined
defined but must hold 0... 100

O M A Smith - May not be reproduced without permission

Adaintroduction: Part2 47

When performing arithmetic with an instance of atype's base type, no range checks take place. This allows an
implementor to implement the base type in the most efficient or effective way for a specific machine. However,
the exception Const r ai nt _Error will be generated if the resultant arithmetic evaluation leads to a wrong
result. For example, the exception Constraint_ Error is generated if an overflow is detected when
performing cal culations with the base type.

4.11.3 Arithmetic with types and subtypes

In a program dealing with a student's exam marks, the following program is written to average the marks for a
student taking English, Maths and Computing:

wi th Ada. Text _| o;
use Ada. Text _lo;
procedure Main is
type Exam Mark is new Integer range 0 .. 100;

Engl i sh . Exam Mark; -- Engli sh exam mar k
Mat hs : Exam MarKk; -- Mat hs "
Conputing : Exam Mark; -- Conputing "
Aver age . Exam_Mark; --

begi n
Engl i sh = 72;
Mat hs = 68;

Conputing : = 76;
Put ("Average exammark is ");

Aver age := (English + Maths + Conputing) / 3;
Put (Exam Mark' | mage(Average)); New_Li ne;
end Mai n;

In executing the statement:

Aver age : = (English+Mat hs+Conputing) / 3;

the expression:

(Engl i sh+Mat hs+Conputing) / 3

will generate a result which is in the range 0 .. 100. However, the component of the statement
Engl i sh+Mat hs+Conput i ng will generate atemporary result which is outside the range of Exam Mar k.

In Ada the arithmetic operations are defined to process instances of the root types. In evaluating
Engl i sh+Mat hs+Conput i ng, Engl i sh+Mat hs will deliver atemporary object of type Root _Ent eger
(Exam_Mar k' Base) which is then added to Conput i ng. The result of the addition is divided by 3 at which
point arange check is performed on the temporary result before it is assigned to the objectaver age.

Of course, for this to work the Root I nt eger type must be sufficiently large to hold the sum of
Engl i sh+Mat hs+Conput i ng. Remember, thiswill be of type Root _| nt eger which has a range of 215
2151,

4.11.4 Warning

If the declaration for Exam_mar k where replaced by:

type Exam Mark is range 0 .. 100;

then the above program would fail with a Const rai nt _Err or if the base type of Exam Mar k were to be
implemented in asingle byte.

O M A Smith - May not be reproduced without permission

48 Adaintroduction: Part 2
4.11.5 Constrained and unconstrained types

In Ada there are no named types only subtypes. The | nteger and Fl oat types are derived from
Root _I nteger and Root Fl oat respectively. Range checks only apply to constrained subtypes, but
overflow checks always apply. For example, using the declaration of Exam_Mar k:

type Exam Mark is new Integer range 0 .. 100;

the following properties hold.

Declaration Instanceis Commentary
Exam Mar k Constrained Constrained to therange 0 .. 100.

Exam Mar k' Base | Unconstrained | No range checks applied to assignment of
this variable. An implementor may allow
this to have a range greater than the base
range of the root type.

Declaration Instanceis Commentary

I nt eger Constrained Constrained to the base range of | nt eger,
which is implementation dependent.

I nt eger' Base Unconstrained | No range checks apply; may have arange greater
than| nt eger.

Note: Regardless of whether an item is constrained or unconstrained, overflow checks will always apply.
Thus, the result obtained will always be mathematically correct.
Take note of the difference between | nt eger and | nt eger 'Base. Instances of the type | nt eger
are constrained to the base range of the type, whilst instances of | nt eger ' Base are not.

4.11.6 I mplementation optimizations

An Ada compiler is allowed to represent an instance of a base type to a greater precision than is necessary. For
example, with the following declarations:

type Exam Mark is new | nteger range 0 .. 100;
type Tenporary is Exam mark' Base;

Engli sh : Exam Mark;

Tot al . Tenporary

the variable Tot al may be implemented to hold numbers of a greater range than is allowed by an | nt eger
declaration. Thisisto allow compiler writers the opportunity to perform optimizations such as holding a variable
or intermediate result in a CPU register which may have a greater precision than the range of normal | nt eger
values. Of course, overflow checkswill be performed at all times, so the mathematical result is always correct.

The danger is that a program which compiles and runs successfully using a particular compiler on a machine
may fail to run successfully when compiled with a different compiler on the same machine, even though both
compilers have the samerange for anl nt eger.

O M A Smith - May not be reproduced without permission

Adaintroduction: Part2 49

4.12 Compile-time and run-time checks

The following program declares data types to represent: (a) the number of power points in a room, (b) the
capacity of alecture room in seats, and (c) the capacity of atutorial room, again in seats. In this program, various
assignments are made, some of which will fail to compile, some of which will fail in execution.

procedure Dec is

type Power _Points is range 0 .. 6;

type Room Si ze is range 0 .. 120;
subtype Lecture_Room is Room Size range O 75;
subtype Tutorial _Roomis Room Size range 0 20;

Points I n_504 Power Poi nts; --Power outlets

Peopl e_I n_504

Lect ure_Room

--Size | ecture room

Peopl e_In_616 Tut ori al _Room --Size tutorial room
begi n

Points In 504 := 3; --0OK

Points_In_504 := 80; --Error / Warning

Peopl e_I n_504 = 15; --0OK

People_In_616 = Peopl e_I n_504; --OK

Peopl e_I n_504 = Poi nts_In_504; -- Type M smatch

Peopl e_I n_504 = Lecture_Roon(Points_In_504); --Force

Peopl e_I n_504 = 50; --0OK

Peopl e_In_616 = Peopl e_I n_504; --Constraint error

end Dec;

The compilation or execution of the following lineswill fail for the following reasons:;

Reason for failure

Therange of values allowed for the object
Poi nt s_| n_504 does not include 80.
This error will usually be detected at
compile-time.

The objects on the LHS and RHS of the
assignment statement are of different types
and will thus produce a compile-time error.
Will cause a constraint error when
executed, asthe object Peopl e_I n_504
contains 50.

In this example, the error could in theory be
detected at compile-time.

Line
Poi nts_I n_504: = 80;

Peopl e_In 504 := Points_In 504;

Peopl e_In 616 := Peopl e_I n_504;

Note: Depending on the quality of the compiler, some errors which in theory could be detected at compile-
time, will only be detected at run-time. Conversely possible run-time errors may be flagged through

warnings at compile time.

This shows the strength of Ada’s strong type checking: problems in a program can be identified at an early
stage of development. However, careful planning needs to be made when writing a program. Decisions about
which distinct datatypes to use and which data types should be a subtype of others are particularly important.

O M A Smith - May not be reproduced without permission

50 Adaintroduction: Part 2

4.12.1 SubtypesNat ur al and Posi ti ve

The Adalanguage pre-defines the following subtypes:

subtype Natural is Integer range O .. |nteger'Last;
subtype Positive is Integer range 1 .. |nteger'Last;

4.13 Enumer ations

In writing a program dealing with different classifications of an item it is good programming practice to give
meaningful names to each of the different classifications that an item may have. For example, in a program that
dealswith colours, an incorrect approach would be to let each colour take a numeric value, as follows:

wi th Ada. Text _| o;
use Ada. Text _lo;
procedure Main is
Car _Col our : Integer;
begi n
Car _Col our := 1,
case Car_Colour is

when 1 => Put ("A red car"); New_Line;
when 2 => Put ("A blue car"); New_Line;
when 3 => Put ("A green car"); New_Line;
when others => Put (" Shoul d not occur"); New_Line;
end case;
end Mai n;
Note: Remember thewhen ot her s isrequired as a case statement and must cover all possible values.

This however, is not very elegant and can lead to confusion about which colour 1 represents. There is also the
danger that a non valid colour will be assigned to the object Car _Col our . By using an enumeration, specific
names can be given to the colours that a car may have. The declaration for the enumeration Col our isasfollows:

type Col our is (Red, Bl ue, Geen);

Thetype Col our isthen used to elaborate objects which can only take the values of Red, Bl ue or Gr een.
The enumeration type Col our isused asfollowsin the re-writing of the previous code fragment:

wi th Ada. Text | o;

use Ada. Text _lo;

procedure Main is
type Col our is (Red,Blue, Geen);
Car _Col our : Col our;

begi n
Car _Col our := Bl ue;

case Car_Col our is

when Red => Put ("A red car"); New_Line;
when Bl ue => Put ("A blue car"); New_Li ne;
when Green => Put("A green car"); New_Line;
end case;
end Mai n;
Note: As the only possible values that can now be assigned to Car _Col our are either RedD, Bl ue or

Gr een, thecase statement can be simplified.

O M A Smith - May not be reproduced without permission

Adaintroduction: Part2 51

4.13.1 Enumer ation values

Aswell as symbolic names enumerations may also be character constants. For example, the type Char act er is

an enumeration made up of the charactersin the standard | SO character set.
Thusthetype Char act er isconceptually defined as:

type Character is (nul, soh, -- etc
S -- etc
@, 'A, 'B, 'C, -- etc

Note: The package standard contains conceptual definitions of all the pre-defined types. Section C.4,
Appendix C contains a listing of the package St andar d.

A programmer can define his’/her own enumerations containing characters. For example, the following is an
enumeration type declaration for abinary digit.

type Binary _Digit is ('0);

ST
B Digit : Binary_Digit :="'0";

4.13.2 The attributes' Val and' Pos

The position of a specific enumeration in atype is delivered with the attribute ' Pos whilst the representation of
an enumeration n'th value is delivered by ' Val . These attributes are usefully used on the pre-defined enumeration
Char act er to deliver respectively the character code for a specific character and the character representing a
value. For example, the following program prints the character code for 'A' and the character representing
character code 99.

with Ada. Text _l o, Ada.|nteger_Text_Io;
use Ada. Text _|o, Ada.lnteger_Text |o;
procedure Main is
begi n
Put ("Character '"A has internal code ");
Put (Character' Pos('A')); New._Line;

Put (" Code 99 represents character ")
Put (Character'Val (99)); New Line;
end Mai n;

Which when compiled and run will print:

Character 'A has internal code 65
Code 99 represents character c

O M A Smith - May not be reproduced without permission

52 Adaintroduction: Part 2
4.14 The scalar type hierarchy

The types that are used in arithmetic operations are derived from the scalar types, with the only exception of the
enumerated types. Even though they are considered part of the hierarchy, they may not be used in arithmetic
operations. The type hierarchy isillustrated in Figure 4.1.

enumeration

discrete

) signed
i nteger<:
modular

scalar

fixed <
ordinary

Numeric types

Figure 4.1 Type hierarchy for the scalar types.

Component Example declaration Note
Scalar
discrete
Enumeration t ype colour i s (Red, Green, Blue); 1
Integer type Milesi s range 0.. 10 _000;
Signed
Modular t ype Bytei s nod 256; 2
Real
Fixed
Ordinary type Milesi s del ta0.1range 0.0..10.0; 3
Decimal type Milesis delta0.1digits8;
Float type Milesi s digits8range 0.0..10.0; 4
Notel Theenumeration typesinclude theinbuilt types

Char act er, W de_Char act er andBool ean.

Note2 A modular type implements modular arithmetic. Thus, the following
fragment of code:
type Byte is nod 256;
count Byte := 255;
begin
count := count + 1,

would result incount containing O.

O M A Smith - May not be reproduced without permission

Adaintroduction: Part2 53

Note3 A fixed point number is effectively composed of two components: the
whole part and the fractional part stored in an integer value. This can
lead to more efficient arithmetic on a machine which does not have
floating point hardware or where the implementation of floating point
arithmetic is slow. It also provides a precise way of dealing with numbers
that have a decimal point.

An alternative notation for a decimal fixed point typeis:

type Milesis delta0.1digits 8range 0.0..10.0;
However, even though all compilers must parse this type declaration they
only need to support it if the compiler implements the I nfor mation systems
Annex.

Note4 Afloating point number.
An alternative type declarationis:
typeMilesis digits8;
which defines the precision 8 digits but not the range of values that may
be stored.

4.14.1 Theinbuilt types

Adaprovidesthe following inbuilt types.

Type Classification | Aninstance of thetype

Bool ean Enumeration | Holdseither True or False.

Char act er Enumeration | Holds a character based on the SO 8859-1
character set. In which there are 256 distinct
characters.

Fl oat Float Holds numbers which contain a decimal
place.

| nt eger I nteger Holds whole numbers.

W de_character |Enumeration | Holds a character based on the 1SO 10646
BMP character set. In which there are 65536
distinct characters.

The implementation minimum values for these types are given in Section B.6, Appendix B.

4.15 Arithmetic operators

The arithmetic operatorsin Ada 95 are:

+ Addition

- Subtraction

* Multiplication
/ Division

The following arithmetic operators are defined on integer values only:

nmod Modulus
rem Remainder
abs Returns the absol ute value

The operators nod and r emare similar, and will give identical results when both operands have the same sign.
The operator r emgives a remainder corresponding to the integer division operation /. The consequence of thisis
that as integer division truncates towards 0, the absolute value of the result will always be the same regardless of

O M A Smith - May not be reproduced without permission

54 Adaintroduction: Part 2

the sign of the operands. nod meanwhile gives the remainder corresponding to a division with truncation towards
minusinfinity.

The following tables illustrate the result of using nod and r em With both operators an RHS (Right Hand
Side) of O will cause the exception Constraint_error to be raised. The resultant exception
Constraint _error isindicated by the message Er r in thetables.

md | -5 -3 0 3 5 rem | -5 -3 0 3 5
-5 | 0 -2 BT 1 O -5 | 0 -2 ET -2 O
-3 | -3 0 EBFr 0 2 -3 | -3 0 EBEFr 0 -3
0O | 0O 0 Er 0 O O | 0O O Er 0 O
3 | -2 0 EBFr O 3 3| 3 0 EBFr 0 3
5 | 0 -1 EFr 2 O 5 | 0 2 EFr 2 0

The operator abs delivers the absolute value of an interger quamtity.
4.15.1 Exponentiation

The operator * * isused toraiseareal or integer value to awhole power, which must be greater or equal to zero.

| il | Exponentiation |

The effect of using ** for different powers of integer values is shown in the table below. The exception
Constrai nt _error israised for anegative RHS.

** | -3 -1 0 1 3

------------------------- Theimplementation of a** b can be
-3 | Err Err 1 -3 -27 performed by multiplication in any
-1 | EBrr Brr 1 -1 -1 order.
0O | Err E'r 1 0 O Hencea* * 4 could be implemented as
1 | Brr Err 1 1 1 a*a*a*aor(a*a)**2.
3 | Err Err 1 3 27

4.15.2 Monadic arithmetic operators

The monadic integer arithmetic operators are as follows:

- Negation
+ Positive form

These deliver the negative and posative of aninteger or floating point expression/number.

4.16 Membership operators

The membership operators are:

in isamember of
not in is not amember of

These operators check if avalue isamember of a subtype or range. For example, to check if aletter belongs to
the upper case alphabetic characters the following code may be used:

O M A Smith - May not be reproduced without permission

Adaintroduction: Part2 55

if Chin'A .. 'Z then
Put (" Character is Upper Al phabetic"); New_Line;
end if;

Alternatively, to check if an item is not amember of the upper case alphabetic characters, the code would be;

if Chnot in'A .. "'Z then
Put (" Character is not Upper Al phabetic"); New_Line;
end if;

The membership test can also be used to check if avalueisin the range of a subtype. For example:

wi th Ada. Text _l o, Ada.I|nteger_Text_Io;
use Ada.Text _l|o, Ada.lnteger_Text |o;
procedure Main is
subtype Exam Mark i s Integer range 0 .. 100;
Mark : I nteger;
begi n
Get(Mark);
if Mark in Exam Mark then
Put ("Valid mark for exant); New_Line;

end if;
end Main;
Note: However, if Exam_mar k had been declared as a type then a compile-time error would be generated,

asthetype of operands of i n are not compatible.

4.17 Use of types and subtypes with member ship operator

A program to convert aperson's height in inches to metresis shown below:

with Ada. Text _l o, Ada.|nteger_Text_Io;

use Ada. Text_lo, Ada.lnteger_Text_Io;

procedure Main is
Metres_In_Inch : constant Float 0. 0254; - - Conver si on
Max_Hei ght . constant Fl oat 120. 0; --
subtype Metres is Float range 0.0 .. Max_Height*Metres_In_I nch;
subtype Inches is Float range 0.0 .. Max_Hei ght;

Hei ght _I nches : Fl oat; --Data
Hei ght _Metres : Metres; --Converted
begi n
Put ("Enter person's height in Inches ");
Get (Hei ght _I nches); --Cet data
if Height_Inches in Inches then --Sensi bl e
Hei ght _Metres : = Height_Inches * Metres_In_lnch; --Convert
Put ("Height in Metres is ")
Put (Hei ght _Metres, Exp=>0, Aft=>2); New_Li ne;
el se
Put (" Hei ght not valid"); New_Line; --Error
end i f;
end mai n;

In the program, subtypes have been used to help check the consistency of the input data and so that internal
consistency checks can be performed on calculations. The person's height is read into the variable
Hei ght _I nches which is of type Fl oat. Validation against the range of the subtype | nches is then
performed. The height in inches is then converted to metres and assigned to Hei ght _Metres. As

O M A Smith - May not be reproduced without permission

56 Adaintroduction: Part 2

Hei ght _Met res isof subtype Met r es, arange check is performed on the assigned value. No conversion is
required when Hei ght _Met r es isoutput asitstype Met r es isasubtype of FI oat .
An example of auser'sinteraction with the program is shown below:

Enter person's height in Inches 73.0
Height in Metres is 1.85

4.18 Relational operators

Thelogical comparison operators are:

= equal
/= not equal

< lessthan

> greater than
<= less than or equal
>= greater than or equal

Therelational operators are used to establish the truth of arelationship between two values. Theresult is of type
Bool ean. For example:

with Ada. Text _l o, Ada.|nteger_Text_Io;
use Ada. Text | o, Ada.lnteger_Text |o;
procedure Main is

Tenperature : Integer; --Tenperature in Centigrade
Hot : Boolean; --ls it hot
begi n

Get (Tenperature);
if Tenperature > 24 then
Put ("It's warnt); New_Li ne;

end if;
Hot := Tenperature > 30;
if Hot then
Put ("It's hot"); New_Line;
end if;
end Mai n;

4.18.1 Bool ean operators

Boolean values may be combined with the following operators:

and logical and Note: Both LHS and RHS evaluated
or logical or Note: Both LHS and RHS evaluated
and then logical and Note: RHS only evaluated if LHS TRUE
or else logical or Note: RHS only evaluated if LHS FALSE
xor Exclusiveor,

True xor False => True Falsexor True => True

True xor True => False False xor False => False

O M A Smith - May not be reproduced without permission

Adaintroduction: Part2 57

For example, the following program prints a message on Christmas day.

with Ada. Text _| o, Ada.|nteger_Text_Io;
use Ada. Text _lo, Ada.lnteger_Text _Io;
procedure Main is

Mont h, Day : |nteger; --Date
begi n

Get(Day); Get(Month);

if Day = 25 and Month = 12 then

Put (" Happy Christnas"); New_Line;

end i f;

end Main;

By usingand t henoror el se only the minimal evaluations will be performed to determine the truth of
the Boolean expression. For example, the following two fragments of code are equal in effect:

if Mnth =2 and then Day = 29 then if Mnth =2 then
-- The 29th of February if Day =29 then
end if; -- The 29%th of February
end if;
end if;
Note: The RHS of the condition will only be evaluated if month = 2 istrue.

In some cases the correct evaluation of the RHS of anand or or Boolean operator will depend on the
evaluation of the LHS of the operator.

Section B.4.1, Appendix B contains alist of the priority of al the operators.

4.18.2 Monadic Bool ean operators

Theinverse of aBoolean valueis obtained by using the operator:

| not | not |

This deliversthe inverse of the Boolean expression or Boolean value. For example:

if not (Month = 2) then

Put (" Not February"); New_Li ne;
end if;

Note: The bracketsarerequired as= hasalower priority than not.

4.19 Bitwise oper ators

These are used for operating on modular quantities. Most programs will only occasionally require the use of these

operators.
and bitwise and
or bitwise or
xor bitwise xor
not Inverse of bit pattern

For example, using the declarations:

O M A Smith - May not be reproduced without permission

58 Adaintroduction; Part 2

K : constant := 1024,
type Wrdl1l6 i s nod 64 * K;
Pattern : Wrdl6;

the following code:

) sets the top nibble of the two byteword Pat t er n to zero.

Pattern := Pattern and 16#FFF#;

) setshit 9 in the two bytewordPat t er n to 1.

Pattern := Pattern or 2#0000001000000000%#;

Note: The constant to base 16 is 16#FFF# and to base 2 is 2#0000001000000000#. Section B.4,
Appendix B describes how to declare constants to different bases.

) Flips bit 9 inthetwo bytewordPat t er n. If bit 9werea 1l it would now bea0 and if it wereaQ it
would now bea 1.

Pattern := Pattern xor 2#0000001000000000%#;

° Invertsthe bitsin the two byteword Pat t er n.

Pattern := not Pattern;

4.20 Sdf-assessment

) Why isit not always appropriate to hold avalue using an instance of aFl oat ?

) How in aprogram can you find out the smallest value that can be stored in an instance of
Long_I nteger?

) What are the benefits of user defined types and subtypesin a program?
) Why does the following program fail?
procedure Main is
type Ml es is new Integer range 0 .. 100;
type Kilometres is new Integer range 0 .. 100;
London_Bri ght on > Mles := 50;
To_Bri ghton . constant Kilonetres := 2;
Di stance_To_London : M es;
begi n
Di stance_To_London : = London_Brighton + To_Bri ghton;
End Mai n;
) What is the difference between atype and a subtype?
) Why are the concepts of universal integer and universal float important?
) How can you convert aval ue of one type to that of another?
) Using the type declarations:

O M A Smith - May not be reproduced without permission

Adaintroduction: Part2 59

type Ml es is newlnteger range O .. 10_00;
type Kilonetres is range 0 .. 100;

what are the ranges of the following variables:

London_Brighton : Kilonmetres' Base;
London_New York : M| es' Base;

How can the use of enumerations help improve a program's clarity?

4.21 Exercises

Construct the following programs using types and subtypes where appropriate:

Isprime

A program to say if anumber is prime. A prime number is apositive number which isdivisible by only
1and itself.

Series

A program to print out numbersintheseries112 358 13... until the last term is greater than 10000.

Timestable general case
Write a program to print atimestable for any positive number.

Y ou may wish to use the following approach.

Theinput procedure get may takeitsinput from astring. The following statement: get (
argunent (1), nunber, |ast); will convertthe number held as charactersin the string
‘ar gunment (1) ' into an integer number in the variable nunber . The argument| ast denotesthe
position in the string of the last character processed.

Temperature
A program to convert a Fahrenheit temperature to Centigrade. The formulafor converting between
Fahrenheit and Centigradeiis:

Centigrade temperature = (Fahrenheit temperature - 32)/1.8

Weight

A program to convert a person's weight input in pounds to kilograms.

Assume that there are 2.2046 poundsin akilogram.

Grades

A program to read in a student's name of 20 characters followed by his/her exam mark. The output to be
the student's name followed by grade. For example, marksin the range 10070 get an A grade, 60—69 a
B grade, 50—59 a C grade, 40—49 a D grade and 0—39 an F grade. Thusif the input was:

Andy 74
Bob 46
Charl es 56
Dave 67

the output would be:

Andy A
Bob D
Charles C
Dave B

O M A Smith - May not be reproduced without permission

60

Procedures and functions

5 Procedures and functions

This chapter introduces procedures and functions. They allow a programmer the ability to abstract code
into subprogram units that then may be re-used in different parts of a program or even other programs.
Thisre-use of code, however, is at avery basic level. Other mechanisms, in particular the package, allow a

much greater flexibility in promoting code re-use in programs.

5.1 Introduction

A function or procedure is a grouping together of one or more Ada statements into a subprogram unit, which can
be called and executed from any appropriate part of a program. Functions and procedures allow a programmer a
degree of abstraction in solving a problem. However, related procedures and functions are more powerfully used
when combined with related data items to form a class. The concepts and uses of a class are discussed fully in

Chapter 6.

5.2 Functions

A function is a subprogram unit that transformsits input value or values into a single output value. For example, a

function to convert a distance in milesto Kilometresis shown below:

type Mles is digits 8 range 0.0 .. 25_000.0;
type Kilometres is digits 8 range 0.0 .. 50_000. O;

function M. To_K Fun(Min Mles) return Kilonetres is
Kilonetres Per Mle : constant := 1.609 344;

begi n
return Kilonmetres(M* Kilonetres_Per_ Mle);

end M To_K_ Fun;

Note: The function’s parameters may only import data into the function: they may not be used to export
information back to the caller’ s environment. Thus, a function is a unit of code that transformsitsinput

into a new value that is returned to the
Asthe parameter Mcan only be used to import data into the function, it may not be written to.

The major components of the above function areillustrated in Figure 5.1.

Formal parameter to function Type of returned result
— 5
function MTo K Fun(Min Mles) return Kilometres is
Kilonmeters Per Mle : constant := 1,609 344;
begi n Local variable

return Kilonmetres(M* Kiloneters Per Mle);
Returned value

end M To K Fun;

Figure 5.1 Major components of afunction.

O M A Smith - May not be reproduced without permission

Procedures and functions 61

The function M_To_K_Fun is used in the following program that will print a conversion table for miles to
kilometres. In Ada, a function or procedure may be declared in the declaration section of a procedure or function.
By using this technique, the types for M | es and Kilometres can be made visible to both the function
M To_K_Fun and the main body of code that implements the printing of the conversion table.

with Ada. Text _| o, Ada. Fl oat_Text _| o;

use Ada.Text |o, Ada.Fl oat_ Text | o;

procedure Main is
type Ml es is digits 8 range 0.0 .. 25_000. 0;
type Kilometres is digits 8 range 0.0 .. 50_000. O;

function M To_K Fun(Min Mles) return Kilonetres is
Kilometres_Per_MIle : constant := 1.609_344;

begi n
return Kilonmetres(M* Kilonetres_Per Mle);

end M _To_K Fun;

No Mles : Mles;

begi n
Put("Mles Kilonmetres"); New_Line;
No Mles := 0.0;
while No_Mles <= 10.0 | oop

Put (Float(No_Mles), Aft=>2, Exp=>0); Put(" ");
Put(Float(M To K Fun(No_ Mles)), Aft=>2, Exp=>0);
New_Li ne;
No Mles := No Mles + 1.0;
end | oop;
end Mai n;

When compiled, and run the above program will print the following resullts:

Mles Kilonetres
0. 00 0. 00
1.00 1.61
2.00 3.22
3.00 4.83
4.00 6. 44
5. 00 8. 05
6. 00 9. 66
7.00 11. 27
8. 00 12. 87
9. 00 14. 48

10. 00 16. 09

5.2.1 Local variables

When a variable is declared inside a function, its lifetime is that of the function. When the function is entered,
space for any local variables is created automatically on a run-time stack. On exit from the function, the space
created for the local variablesisreturned to the system.

5.2.2 Separate compilation of functions

It is possible to compile the above function separately. However, if this is done the same types for M | es and
Ki | oret r es must be used in both the main program and the function. One way of ensuring this is to use a
package that acts as a container for the types. This package is then made visible to both program units. The
following program illustrates thisidea.

Firstly, the package that contains the typesM | es andKi | onet r es isconstructed.

O M A Smith - May not be reproduced without permission

62 Procedures and functions

package Pack_Types is
type Ml es is digits 8 range 0.0 .. 25_000. 0;
type Kilonetres is digits 8 range 0.0 .. 50_000. 0;
end Pack_Types;

Then this package is made visible to the functionM _To_K_Fun.

wi th Pack_Types; use Pack_Types;

function M To_K Fun(Min Mles) return Kilonetres i s
Kilometres_Per_MIle : constant := 1.609_344;

begi n
return Kilonmetres(M* Kilonetres_Per_ Mle);

end M To_K_Fun;

Finally, in the main procedure in addition to the normal input and output packages the package Pack _Types
and thefunction M_To_K_Fun are made visible.

with Ada. Text | o, Ada.Float_Text | o, Pack_Types, M To_K Fun;
use Ada.Text _lo, Ada.Float_Text_lo, Pack_Types;
procedure Main is
No_ Mles : Mles;
begi n
Put("Mles Kilonetres"); New_ Line; No_Mles := 0.0;
while No_Mles <= 10.0 | oop
Put (Float(No_Mles), Aft=>2, Exp=>0); Put(" ");
Put(Float(M To K Fun(No_ Mles)), Aft=>2, Exp=>0);
New Line; No_ Mles := No_Mles + 1.0;

end | oop;
end Main;
Note: It is only required to with the function M_To_K_Fun. It would be an error to use the function
M_To_K_Fun.

5.3 Procedures

A procedure is a program unit that, unlike a function, does not return aresult. If information has to be returned to
the calling environment thisis done instead by writing to aformal parameter that has been declared as mode out .
Writing to the formal parameter of a procedure updates the value of the actual parameter passed to the procedure.
The full implications of modes of a parameter are discussed in Section 5.5.

type Ml es is digits 8 range 0.0 .. 25_000. 0;
type Kilonmetres is digits 8 range 0.0 .. 50_000. 0O;
procedure M To_K Proc(Min Mles; Res:out Kilonetres) is
Kilonetres_ Per Mle : constant := 1.609 344;
begi n
Res := Kilometres(M* Kilonmetres_Per Mle);
end M To_K Proc;

Note: A procedure can only export values back to the caller’ s environment by writing to a parameter that has
modeout ori n out.

O M A Smith - May not be reproduced without permission

Procedures and functions 63

The major components of a procedure areillustrated in Figure 5.2.
Formal parameters to procedure
\ *

procedure M To_K Proc(Min Mles; Res:out Kilonetres) is

Kilometres_Per Mle : constant := 1.609_ 344,

) Local variable
begin

Res := Kilonmetres(M* Kilonmetres Per Mle);

end M To K Proc

Figure 5.2 Components of an Adaprocedure.

This procedure may then be used in a program as follows:

with Ada. Text lo, Ada.Fl oat Text 1o0;

use Ada. Text |l o, Ada.Float_Text _|o;

procedure Main is
type Ml es is digits 8 range 0.0 .. 25_000. 0;
type Kilonetres is digits 8 range 0.0 .. 50_000. 0;

procedure M To_K Proc(Min Mles; Res:out Kilonetres) is

Kil ometres_Per Mle : constant := 1.609_ 344,
begi n
Res := Kilometres(M* Kilonmetres_Per Mle);

end M To_K Proc;

No_ Mles : Mles;
No_Km . Kilonetres;

begi n
Put("Mles Kilonmetres"); New_Line;
No Mles := 0.0;
while No_Mles <= 10.0 | oop
Put (Float(No_Mles), Aft=>2, Exp=>0); Put(" ");
M To_K Proc(No_Mles, No_Km);
Put (Float(No_Km), Aft=>2, Exp=>0);
New_Li ne;
No_ Mles := No_Mles + 1.0;
end | oop;
end Mai n;

when run, this program would produce the same output as the previous program that used a function to convert
milesto Kilometres.

5.3.1 Separate compilation of procedures

The same strategy as seen in Section 5.2.2 can be used to separately compile a procedure.

O M A Smith - May not be reproduced without permission

64 Procedures and functions
5.4 Formal and actual parameters

In describing the parameter passing mechanism the following terminology is used:

Terminology Commentary

Formal The parameter used in the declaration of a function or

parameter procedure. For example, in the function M To_K_Fun the
formal parameteris M.

Actual The object passed to the function or procedure when the

parameter function or procedure is called. For example, in the procedure

M To_K Proc the actual parameters are No_M | es and
No_Km An expression may also be passed as an actual
parameter to afunction or procedure, provided the mode of the
formal parameter isnotout (See Section 5.5).

In discussing functions and procedures it is important to distinguish between the actual parameter passed to a
function and the formal parameter used in the body of the code of the function or procedure. This relationship is
shown in Figure 5.3.

wi t h Ada.Text_lo, Ada.Float Text lo;

use Ada.Text_lo, Ada.Float_Text_lo;

procedure Main is
type Miles is digits 8 range 0.0 .. 25 000.0;
type Kilometres is digits 8 range 0.0 .. 50 _000.0;

Formal w to function

function M_To_K_Fﬁ;ah:in Miles) return Kilometres is
Kilometres_Per _Mile I constant 1= 1.609 344;
begin
return Kilometres(M * Kilometres_Per_Mile);
end M_To_K_Funj;

No_Miles : Miles;

begin Actual parameter to function
Put('Miles Kilometres'™); New_Line;
No_Miles := 0.0;
while No Miles <= 10.0 I oop
Put(Float(No_Miles), Aft=>2

p=>0); Put(” ")

Put(Float(| M_To_K_Fun(No_Miles)), Aft=>2, Exp=>0);

New_Line;
No_Miles = No Miles + 1.0;
end |l oop,
end Main;

Figure 5.3 Formal and actual parameters of afunction.

5.5 Modesof aparameter to afunction or procedure

In Ada, as in many languages, objects can be passed to a procedure in several different ways depending on how
the object is to be accessed. The simplest and by far the safest mode to use, isi n. This allows an object to be
imported into the procedure, but the user is prevented by the compiler from writing to the object.

A procedure can export information to the actual parameter when the formal parameter is described by mode
out . Naturally, for this to happen, the actual parameter’s mode must allow the object to be written to. It must
therefore not be an expression or an object that hasamode of i n only.

A function in Ada however, is only allowed to have parameters of mode i n. The different ways that a
parameter may be passed to afunction or procedure is summarized in the table below:

O M A Smith - May not be reproduced without permission

Procedures and functions 65

Mode Allowed as a Effect
parameter to:

in afunctionor a The formal parameter isinitialized to the contents of the actual
procedure. parameter and may only be read from.

i n out |onlya procedure | Theformal parameter isinitialized to the contents of the actual
parameter and may be read from or written to. When the
procedure is exited, the new value of the formal parameter
replaces the old contents of the actual parameter.

out only aprocedure | Theformal parameter isnot initialized to the contents of the
actual parameter and may be read from or written to. When the
procedure is exited, the new value of the formal parameter
replaces the old contents of the actual parameter.

In Ada83 anout formal parameter may not be read from.

Note: The implementation of the above for simple objectsis usually performed by copying the contents of the
object, whilst for large objects the compiler may implement this by using references to the actual

object.
5.5.1 Example of modei n out

A procedure swap which interchanges the contents of the actual parameters passed to it isasfollows:

procedure Swap(First:in out Integer; Second:in out Integer) is
Tenmp : Integer;

begi n
Tenmp : = First;
First := Second; Second := Tenp;

end Swap;

5.5.2 Putting it all together

The function swap may then be used in aprogram as follows:

with Ada. Text _l o, Ada.lnteger_Text_|o, Swap;
use Ada. Text _lo, Ada.Integer_Text _|Io;
procedure Main is

Books_Room 1 : I nteger;
Books_Room 2 : I nteger;
begi n

Books _Room 1 := 10; Books_Room 2 := 20;

Put ("Books in room 1 ="); Put(Books_Room 1); New_Li ne;

Put ("Books in room2 ="); Put(Books_Room 2); New_Li ne;

Put (" Swap around"); New_Li ne;

Swap(Books_Room 1, Books_Room 2);

Put ("Books in room1 ="); Put(Books_Room 1); New_Li ne;
Put (" Books in room2 ="); Put(Books_Room 2); New Li ne;

end Main;

which when run produces:

Books in room1 = 10
Books in room2 = 20
Swap around

Books in room1 = 20
Books in room 2 = 10

O M A Smith - May not be reproduced without permission

66 Procedures and functions

5.5.3 Summary of accessto formal parameters

Formal parameter specified by: [Writeto | Readfrom | Canbeusedasa

(using as an example an formal formal parameter to
I nt eger formal parameter) parameter | parameter
allowed

item |nteger X
item in Integer X
item in out Integer o)
item out Integer @)

procedure or function
procedure or function
procedure only
procedure only

O[O O O

5.6 Recursion

Recursion is the ability of a procedure or function to make a call on itself from within its own code body. Whilst
this initially may seem a strange idea, it can lead to very elegant code sequences that otherwise would require
many more lines of code. In certain exceptional cases recursion isthe only way to implement a problem.

An example of arecursive procedure to write a natural number using only character based output is sketched
in outline below:

Write anatural number: (Wi t e_nat ur al)
° Split the natural number into two components
(@ Thefirst digit (remainder when number divided by 10)
(b) The other digits (number divided by 10).

For example:
123 would be split into:
3 (first digit)
12 (other digits).

) If the other digits are greater than or equal to 10 then write the other digits by recursively
calling the code to write a decimal number.

) Output the first digit as a character.

The sequence of callsmadeis

Call Implemented as

wite natural (123) write_natural (12); outputfirstdigit3
wite natural (12) write_natural (1); outputfirstdigit2
wite natural (1) output first digit 1

This processis diagrammatically expressed in Figure 5.4.

Initial call

Split
recursive call on 12

4
Split
recursive call on 1
1
Split .
but no recursive call required Unwind
1

Figure5.4 lllustration of recursive callsto print the natural number 123.

O M A Smith - May not be reproduced without permission

Procedures and functions 67

The process works by solving a small part of the problem, in this case how to output a single digit, then re-
executing the code to solve the remainder of the problem, that is, to output the other digits. In this particular
example, the recursive call is made before the solution of the remainder of the problem. This still works as the
problem to be solved ‘the number to be output’ isreduced in size in each recursive call.

However, for recursion to work, the code must reduce the problem to be solved before recalling itself
recursively. If this does not take place then endless recursive calls will ensue, which will cause eventual program
failure when the system cannot allocate any more memory to support the recursion. Stack space is used on each
recursive call to store any parameters or local variables plus the function / procedure support information.

5.6.1 TheprocedureW it e_Nat ur al

Theprocedurewr i t e_nat ur al 'simplementation is shown below:

with Ada. Text |o0; use Ada. Text | o;
procedure Wite Natural (Num: Natural) is

First_ Digit : Natural; --Unit digit

O her_Digits : Natural; --All except first digit
begi n

First_Digit := Numrem 10; --Split 1234 => 4

Qher_Digits := Num/ 10; - - => 123

if Num >= 10 then --Print other digits

Wite Natural (Gher_Digits); --Recursive call
end if;

Put (Character'Val (First_Digit + Character'Pos('0")));
end Wite_ Natural;

5.6.2 Putting it all together

ThefunctionW i t e_Nat ur al could be used in aprogram as follows:

with Ada. Text lo, Wite Natural;
use Ada. Text _lo;
procedure Main is

begi n
Wite_Natural (123); New_Li ne;
Wite_Natural (12345); New_Li ne;
end Mai n;

which when run would produce:

123
12345

5.7 Overloading of functions

Overloading is a process that allows several items providing different facilities to have the same name. The
compiler chooses the appropriate definition to use from the context of its use.

This is best illustrated by an example where the overloaded item is a procedure. Firstly, three different
procedures are defined which each have a different action. The action is to identify and print the contents of their
single parameter.

O M A Smith - May not be reproduced without permission

68 Procedures and functions

with Ada. |l nteger_Text _|o;
use Ada.lnteger_Text _|o;
procedure Answer |Is(Nin Integer;
Message:in Boolean := True) is
begi n
if Message then Put ("The answer = "); end if;
Put(N, Wdth=>1);
if Message then New_ Line; end if;
end Answer _|s;

with Ada. Text _l o, Ada.|nteger_Text_Io;

use Ada.Text _l|o, Ada.lnteger_Text |o;

procedure Is_A Int(An_Int:in Integer) is

begi n
Put ("The paraneter is an Integer: value =");
Put(An_Int, Wdth=>1); New_Line;

end Is_A Int;

with Ada. Text _| o, Ada.Fl oat_Text_Ilo;

use Ada.Text |o, Ada.Fl oat_ Text | o;

procedure Is_A Float(A Float:in Float) is

begi n
Put (" The paraneter is a Float: value = ");
Put(A Float, Aft=>2, Exp=>0); New_Li ne;

end Is_A Float;

Theindividual procedures have unique namesso that they can beidentified and re-used in aprogram. Thisisa
consequence of each procedure being a separate compilation unit. However, Ada allows the renaming of a
procedure or function. By choosing the same name a user can overload a particular name with several different
definitions. For example, a program unit can be written which renames the three different procedure names
(I's_Alnt,Is_A Float,ls_A Char)withthesameoverloaded namel s_A.

with Is Alnt, Is_A Float, |Is_A Char;
procedure Main is
procedure Is_A(The:in Integer) renames Is_A Int;
procedure |Is_A(The:in Float) renanes |s_A Float;
procedure |s_A(The:in Character) renanes |Is_A Char;
begi n
Is_ A "A);
Is_A(123);
I's_A(123.45);
end Mai n;
Note: It ispossibleto write several functions or procedures with the same name directly by using the package
construct.

When run this program would print the type and value of the argument passed tol s_A.

The paraneter is a Character: value = A
The paraneter is an Integer: value = 123
The paraneter is a Float: val ue = 123. 450

Of course, for this to happen, the actual function called must be different in each case. The name | s_A is
overloaded by three different functions. The binding between the called function and its body is worked out by the
compiler at compile-time using the signature of the different functions that have been overloaded to resolve any
conflicts.

O M A Smith - May not be reproduced without permission

5.8

5.9

Procedures and functions 69

Different number of parameters

As the compiler can distinguish between overloaded names, several functions that deliver the maximum or larger
of their parameters can be written. With re-use in mind the first function Max2 can be written which delivers the
maximum of thetwol nt eger parameters passed to it.

function Max2(A/ B:in Integer) return Integer is
begi n
if A> B then
return A --ais larger
el se
return B; --b is larger
end if;
end Max2;

This function Max2 can bere-used in afunction Max 3 that will deliver the larger of three parameters passed to it.

w th Max2;
function Max3(A/ B,C.in Integer) return Integer is
begi n
return Max2(Max2(A B), C);
end Max3;

Then the following code can be written:

with Ada. Text _i o, Ada.lnteger_Text_lo, Max2, Mx3;

use Ada. Text i o, Ada.lnteger_Text _|o;

procedure Main is
function Max(A B:in |nteger) return I nteger renanmes Max2;
function Max(A B, C.in Integer) return |Integer renanes Mxs3;

begi n
Put ("Larger of 2 and 3 is "); Put(Max(2,3)); New Li ne;
Put ("Larger of 2 3 4 is"); Put(Max(2,3,4)); New. Line;
end Main;
Note: The use of renames to overload the name Max with 2 distinct function definitions.

which when run produces:

Larger of 2 and 3 is 3
Larger of 2 3 4 is 4
Note: The overloading of names in an Ada program can provide a simpler interface for a programmer.

However, the overuse of overloading can lead to programs that are difficult to maintain and debug.

Default values and named parameters

If adefault valueis given to a parameter, then it may be omitted by a programmer when they write the call to the
function or procedure.

For example, the function sumwhose four parameters have a default value of zero returns the sum of these
parameters. The procedure Answer _| s prints the first parameter with an additional message when the second
parameter has the default value Tr ue.

O M A Smith - May not be reproduced without permission

70 Procedures and functions

function Sum(Pl:in Integer := 0;
P2:in Integer := 0;
P3:in Integer := 0;
P4:in Integer := 0) return Integer is
begi n
return P1L + P2 + P3 + P4;
end Sum

with Ada. Text _| o, Ada.|nteger_Text _io;
use Ada. Text_lo, Ada.lnteger_Text_io;
procedure Answer |Is(Nin Integer;
Message:in Boolean := True) is

begi n

if Message then Put ("The answer = "); end if;

Put(N, Wdth=>1);

if Message then New_Line; end if;
end Answer _Is;

Note: Formal parameters to the function Sumare given a default value of 0, if a value has not been supplied
by a caller of the function.

Any actual parameter to a function or procedure may be specified either by position or by name. For example, the

second formal parameter to the function Answer _| s can be specified in the following ways:

Answer _|s(27, True); -- By position
Answer _|s(27, Message => False); -- By nane
Note: If a parameter is specified by name, then all subsequent parameters must be specifi ed by name.

5.9.1 Putting it all together

The proceduressumand Answer _I s can be used in aprogram as follows:

with Sum Answer_|Is;
procedure Main is
begi n
Answer _Is(Sum);
Answer _Is(Sun(1, 2 ;
Answer _Is(Sum(1, 2, 3));
Answer _Is(Sum(1, 2, 3, 4), Message => Fal se);
New_Li ne;
end Mai n;

The code that is actually compiled for the procedure Mai n aboveis:

with Sum Answer Is;
procedure Main is
begi n

Answer _Is(Sum(0, O, O, 0), True);
Answer _Is(Sum 1, 2, 0, 0), True);
Answer _Is(Sum 1, 2, 3, 0), True);
Answer _Is(Sum(1, 2, 3, 4), False);
New_Li ne;

end Mai n;

which is more complex for the writer to construct and for a maintainer to follow.

O M A Smith - May not be reproduced without permission

Procedures and functions 71

Note: The syntax Message => Fal se isused for specifying a parameter by name.
The syntax for the call of the function s umwhen no parameters are specified has no brackets. This can
lead to confusion as a reader of the code would not know from the context if sumwas a simple
variable or a function call.

When run the above program produces:

The answer = 0

The answer = 3

The answer = 6

10

Note: Procedures and functions may be nested. The advantage of this approach is that a single program unit

may be decomposed into several smaller units and yet hide the internal decomposition.
5.10 Self-assessment

) From a programming safety point of view, what are the advantages of passing parameters by modei n
rather than by modei n out ?

) Why is parameter passing using modei n out required, if values can already be passed back as the
result of afunction?

) When might overloading of function names be used?
) What are the disadvantages of overloading namesin aprogram?
) What is the difference between afunction and a procedure? Can a procedure which exports several

values through the parameter mechanism be easily made into a function? Explain your answer.

5.11 Exercises

Construct the following subprograms and programs:

° The functionWhat _1 s_Char which accepts as a parameter a character and returnsits ‘type’ as
defined by the enumeration :
type Char is (Digit, Punctuation, Letter, O her_Ch);

° Using the functionWhat _I s_Char write aprogram to count the number of digits, |ettersand
punctuation charactersin atext file.

Hint:
Nest the functionWhat _I s_Char inside aprocedure that processesinput received by the program.

° Write aprocedure Or der 3 which takes three parameters of type Fl oat and re-orders the parameters
into ascending order.

O M A Smith - May not be reproduced without permission

72 Procedures and functions

) Write a program that finds the average of three rainfall readings taken during the last 24 hours. The

program should print the average of the samples plus the readings in ascending order. For example, if
the input data was:

4.0 6.0 5.0
then the program should produce output of the form:
Rai nfal | average is : 5.00

Data val ues (sorted) are : 4.00 5.00 6.00

O M A Smith - May not be reproduced without permission

6 Packages as classes

This chapter introduces the package construct. A package is an elegant way of encapsulating code and
data that interact together into a single unit. A package may be used in a variety of ways. This chapter,
however, will promote its use to define classes.

6.1 Introduction

The world in which we live is populated by many devices and machines that make everyday living easier and
more enjoyable. The TV, for instance, is viewed by almost every person in the country, yet few understand
exactly what happens inside ‘the box’. Likewise, there are many millions of motorists who drive regularly and do
not need a detailed knowledge of the workings of a car to make effective use of it.

To many people, their knowledge of acar isas shown in Figure 6.1. The exact details of what happens inside
the car are not important for most day-to-day driving.

In essence the world is populated with many objects which have an interface that allows the humblest of
persons to make effective use of the item. We sometimes criticize the interfaces as being ineffective and difficult
to use, yet in most cases we
would prefer to use the objects as they stand, rather than having to perform the task by other means.

Likewise in the software world, there are objects that a user or programmer can make effective use of without
having to know how the object has been implemented. On a very simple level an Ada program may declare
objects to hold floating point numbers, which can then be used with arithmetic operations to sum, multiply, etc.
these values. Most programmers however, do not know the exact details of how these operations are performed;
they accept the interface provided by the programming language.

4)

Engi ne etc.

1

Accel erate

\ J

Actions required to drive an

/
automatic car. \ / ¢
v

St eer]

\ J

Figure 6.1 Basic understanding of working of an automatic car.

The details of what happens inside the car are not important for most day-to-day driving.

In essence the world is populated with many objects which have an interface that allows the humblest of
persons to make effective use of the item. We sometimes criticize the interfaces as being ineffective and difficult
to use, yet in most cases we would prefer to use the objects as they stand, rather than having to perform the task
by other means.

O M A Smith - May not be reproduced without permission

4

6.2

6.3

Packages as classes

Likewise in the software world, there are objects that a user or programmer can make effective use of without
having to know how the object has been implemented. On a very simple level an Ada program may declare
objects to hold floating point numbers, which can then be used with arithmetic operations to sum, multiply, etc.
these values. Most programmers however, do not know the exact details of how these operations are performed;
they accept the interface provided by the programming language.

At one point it was fashionable for programming languages to provide arich set of data types. The designers
of these languages hoped the data types provided would be adequate for all occasions. The problem was, and still
is, that no one language could ever hope to provide all the different types of item that a programmer may need or
wish to use.

Ada gives a programmer the ability to declare new data types, together with a range of operations that may be
performed on an instance of the type. Naturally, a programmer may also use types and operations on these types
that have been defined by other programmers.

Objects, messages and methods

A car can be thought of as an object. The car contains complex details and processes that are hidden from the
driver. For example, to make the car go faster the driver presses the accelerator pedal. The car receives the
message ‘go faster’ and evokes an internal method to speed up the engine.

In the above description of driving a car many object-oriented ideas have been used. These ideas are as
follows:

object Anitem that has ahidden internal structure. The hidden structure
is manipulated or accessed by messages sent by a user.

message A request sent to the object to obey one of its methods.

method A set of actions that manipulates or accesses the internal state of
the object. The detail of these actionsis hidden from auser of the
object.

Obj ects, messages and methodsin Ada

In Adaan object is an instance of either a user-defined type or an instance of one of thein-built types.
An object for a user-defined type can be imagined diagrammatically as Figure 6.2.

= R
[1 3

/ Met hod 1
Messages sent to an object / ¢
which evoke methods that
access the internal hidden Vet hod 2
data

v

Met hod 3]

\ J

A message is implemented as either a procedure or function call, the body of which is the method that is
evoked when the message is sent to the object. The user of the object has no knowledge of the implementation
code contained in the body of the procedure or function.

Figure 6.2 Diagrammatic representation of an object.

Note: The idea of binding code and data together in a unit that does not allow direct access to the data is
often referred to as encapsulation.

O M A Smith - May not be reproduced without permission

Packagesasclasses 75

6.3.1 An object for a bank account

Before looking in detail at the implementation of an object that represents a bank account, it is appropriate to
consider the messages that might be sent to such an object. For avery simple type of bank account these messages

would be:
) Deposit money into the account.
) Withdraw money from the account.
° Deliver the account balance.

The following program demonstrates the sending of these messages to an instance of anAccount .

with Ada. Text _lo, C ass_Account, Statenent;
use Ada.Text_lo, C ass_Account;
procedure Main is
My_Account: Account;
bt ain . Money;
begi n
St at ement (My_Account);

Put ("Deposit £100.00 into account"); New_Line; --Deposit
Deposit (My_Account, 100.00);
St at enent (My_Account);

Put ("Wt hdraw £80.00 from account"); New_Line; --Wthdraw

Wthdrawm(My_Account, 80.00, Obtain);
Statement (My_Account);

Put (" Deposit £200.00 into account”); New_Line; --Deposit
Deposi t (My_Account, 200.00);
St at ement (My_Account);

end Mai n;
Note: The package Cl ass_Account contains.
° The definition of the type Account plus the definition of the operations allowed on an instance of an
Account ;
° The subtype Money used to define some of the parameters to messages sent to an instance of
Account .
° The procedure Statement is used to simplify the printing of a mini statement of the balance held in the
account.

The messages sent to an instance of an Account are: Deposi t , Wt hdr aw, Bal ance. For example, to
deposit £100 into My_Account thefollowing procedural notation is used:

Deposit(My_Account, 100.00);

This should be read as: send the message deposi t to the object My_Account with an actual parameter of
100.00.

To withdraw money from the account a programmer would send the message W t hdr aw to the object
My_Account with two parameters, the amount to withdraw and a variable that is to be filled with the amount
actually withdrawn. The implementation of the method will check that the person has sufficient funds in their
account to allow the transaction to take place. Thisiswritten as:

Wt hdraw(My_Account, 80.00, obtain);

Note: In reality the method is a normal Ada procedure that is passed as parameters, the object on which the
action isto take place, plus any additional information as successive parameters.

O M A Smith - May not be reproduced without permission

76 Packages as classes

6.3.2 The procedure St at enent

The procedure St at enent is responsible for printing a mini-statement about the contents of an account. This
procedureis defined as follow:

with Ada. Text |o, Ada.Float Text lo, C ass_Account;
use Ada.Text _lo, Ada.Float_Text |o, Cass_Account;
procedure Statenment(An_Account:in Account) is
begi n
Put ("M ni statement: The anmount on deposit is £");
Put (Bal ance(An_Account), Aft=>2, Exp=>0);
New_Li ne(2);
end St atement;

Note: The use of the method Bal ance to access the amount of money in the account.
6.3.3 Putting it all together

When compiled with an appropriate package body, the above program unit when run will produce the following
results:

M ni statement: The anpbunt on deposit is £ 0.00

Deposit £100.00 i nto account
M ni statenent: The anmpunt on deposit is £100.00

W't hdraw £80. 00 from account
M ni statenent: The anpbunt on deposit is £20.00

Deposit £200.00 i nto account
M ni statenent: The amount on deposit is £220.00

6.3.4 Components of a package

The package construct in Ada is split into two distinct parts. These parts contain the following object-oriented
components:

Ada package component | Object-oriented component

Specification The type used to elaborate the object, plus the
specification of the messages that can be sent to an
instance of the type.

Implementation Implementation of the methods that are evoked when
amessage is sent to the object.

6.3.5 Specification of the package

The specification defines what the packages does, but not how it performs the implementation. It is used by the
Adacompiler to check and enforce the correct usage of the package by a programmer.

The specification is split into two distinct parts: a public part and a private part. The public part defines the
messages that may be sent to an instance of an Account , whilst the private part defines the representation of the
type Account .

Astherepresentation of Account isdefined in the private part of the specification, auser of an instance of an
Account will not be allowed to access the internal representation. The user however, is allowed to declare and,
depending on the description of the type, assign and compare for equality and inequality. In this case the
description of the typeis private and a user is allowed to declare, assign and compare for equality and inequality
instances of Account .

O M A Smith - May not be reproduced without permission

Packagesasclasses 77

package Cl ass_Account is

type Account is private;
subtype Money is Float;
subtype Pnoney is Float range 0.0 .. Float'Last;

procedure Deposit (The:in out Account; Amount:in Proney);

procedure Wthdraw(The:in out Account; Anmpunt:in Pnoney;
Get: out Pnoney);

function Balance (The:in Account) return Money;

private
type Account is record
Bal ance_OF : Money := 0.00; --Anmobunt i n account
end record;

end C ass_Account;

The component parts of the specification areillustrated in Figure 6.3.

Type used to declare Types and
package O ass Account is /instanceof theclass subtypes used

/in messages

subtype Money is Float:
subt vpe Pnonev is Float ranae 0.0 .. Float'Last;

[tvpe Account is private;]

(" procedure Deposit (The:in out Account; Anmount:in Pnoney);

procedure Wthdraw(The:in out Account: Anmount:in Pnoney:
Get: out Pnonev);

function Balance (The:in Account) return Mney;

A
private
Messages that can be
type Account is record sent to an instance of an
Bal ance OF : Mbnev : = 0.00: Account

end record:

end d ass_Account; . . .
Hidden representation of the internals of

an instance of an Account

Figure 6.3 Components of the specification part of apackage.

The representation of Account (which is defined in the private part) is a subtype of a FlI oat that will have
aninitial value of 0.00. An Adarecord groups together several type declarations into a single named type. In this
case the record type Account declares a single object called Bal ance_Of . Ther ecor d type is more fully
discussed in Section 7.1.

Note: Thet ype Account isdefined in the public part of the specification as pri vat e. This means that a
user of an instance of the type cannot access the internal contents of the object. Apart from the methods
defined in the public part of the specification the only operations that a user can perform on this object
isto assign it to another instance of an Account or compare two instance of an Account with either
=or/=.

O M A Smith - May not be reproduced without permission

78 Packages as classes

6.3.6 A class diagram showing a class

A class diagram for the classAccount using the UML notationisillustrated in Figure 6.4.

Class Diagram Components
Account The classAccount iscomposed of the instance
variable;
Bal ance_Of Bal ance_Of
_ and the methods:
Deposi t Deposi t ,W t hdr aw, and Bal ance.
W t hdr aw
Bal ance

Figure 6.4 Class diagram for the classAccount .
6.3.7 Representation of the balance of the account

The package Cl ass_Account represents internally the balance of the account as a subtype of a Fl oat. A
Fl oat is an inexact way of representing numbers, as only the most significant digits of the number will be
stored. Instances of a type declaration of the form type Money is delta 0.01 digits 8; would
provide a more reliable way of holding the balance of the account. However, this would require instantiation of a
specific package for input and output of objects of this type. To simplify the presentation of this package the
representation of the balance of the account isimplemented as a subtype of a Fl oat . After reading Chapters 14
and 18 the reader may wish to re-implement this package as a generic package which uses an instantiation of
Ada. Text _| 0. Deci mal _i o.

6.3.8 Implementation of the package

The implementation of the package Cl ass_Account isasfollows:

package body C ass_Account is

procedure Deposit (The:in out Account; Ampbunt:in Proney) is

begi n
The. Bal ance_Of : = The. Bal ance_Of + Anpunt;
end Deposit;

procedure Wthdraw(The:in out Account; Anpunt:in Pnoney;
Get: out Pnoney) is
begi n
i f The.Bal ance_Of >= Anpunt then
The. Bal ance_OF : = The. Bal ance_Of - Anpunt;
Cet : = Anount;
el se
Cet := 0.00;
end if;
end Wt hdraw,

function Balance(The:in Account) return Money is
begi n

return The. Bal ance_O;
end Bal ance;

end Cl ass_Account;

Note: The use of the overloaded name Get as a parameter to the procedure W t hdr aw.

O M A Smith - May not be reproduced without permission

Packagesasclasses 79

The body of the package contains the definition of the procedures and functions defined in the specification
part of the package. In accessing the Bal ance_OF contained in an instance of Account the . notation is used.
For example, in the function bal ance the result returned is obtained using the statement ‘return
The. Bal ance_Of ; '. The. notation is used to access a component of an instance of arecord type. In this case,
the instance of the record typeisthe object The and the component of the object isBal ance_Of .

6.3.9 Terminology

The following terminology is used to describe the components of aclass.

Terminology Example: Explanation
in class Account
Instance Bal ance_Of A data component of an object. In Ada this
attribute will be a member of the type that is used to
declare the object.
Instance method | Deposi t A procedure or function used to access the
or just method instance attributesin an object.
Note: The terminology comes from the language Smalltalk.

6.4 The package as seen by a user

A user will normally only have access to the specification part of a package. This provides a specification of the
messages that can be sent to an object but does not show how the methods invoked by the messages have been
implemented. The implementation part will not normally be available, the implementor normally providing only a

compiled version of the package.
Unfortunately the details of the private type will normally be visible, though they cannot be accessed.

Note: The details of the private type can be made invisible to a user, but this involves some complexity. One
approach to thisis shown in Section 15.5.

6.5 The package as seen by an implementor

When building a package the implementor should ensure:

) That a user of the package can make effective use of itsfacilities.
) That the only visible components are:
(@ The messages that can be sent to an object.
(b) The private type declaration that is used to elaborate an object.

Thevisibility hierarchy for the package Cl ass_Account isshownin Figure 6.5.

Visibility Component is:

In the public part of the
package specification.

Visibleto aclient
of the package.

Deposi t
Wt hdr aw
Bal ance

Bal ance_Of \ Inthe private part of the

Invisibleto aclient package specification.
of the package -
I npl enent ati on of In the body of the
%ocedur es and functi OA package.

Figure 6.5 Visibility of methods and instance attributes of the packageC ass_Account .

O M A Smith - May not be reproduced without permission

80
6.6

6.7

Packages as classes
Theclass

In object-oriented programming one of the important ideas is that of the class. A class is the collective name for
all objectsthat share the same structure and behaviour. For example, in a program dealing with bank transactions,
all the objectsthat represent a particular type of bank account would belong to the same class.

The class construct in a programming language is used to define objects that share a common structure and
behaviour. Ada does not have a class construct.

However, Ada’'s package construct can be used to simulate the class construct found in other object-oriented
programming languages. For example, aclassAccount isdefined by the following package:

package C ass_Account is
type Account is private;

procedure Deposit (The:in out Account; Amount:in Proney);
-- OGther nethods in the class

private
type Account is record
Bal ance_Of : Money : = 0.00; --Amount i n account
end record;

end C ass_Account;

package body d ass_Account is
-- I nplenentation of the procedures and functions
end C ass_Account;

In defining aclass, | use the following conventions:

) The classis defined in terms of a package which has the class name prefixed withCl ass_.

° The package has a single private type which takes the class name and is used to declare instances of
the class. Hence all instances of the class will share the same structure and behaviour.

) Procedures and functions are used to define the behaviour of the class. The first formal parameter to
the procedure or function is an instance of the class.

) The implementation of the privatetypeisdefined asar ecor d type, the components of which define
the structure of the class.

Clauses wi t h and use

The clauses ‘wi t h Ada. Text | 0; use Ada. Text | o;’ make available the contents of the package
Ada. Text _| o to thefollowing program unit. The package Ada. Text _| o contains definitions for performing
input and output on character and string objects. The exact effect of these clauses are asfollows:

) wi th Ada. Text _1o;
Make available to the unit all the public components of the package. However, when
components of the package are used in a program they must be prefixed with the package
name.

) use Ada. Text | o;

Permit public components of the package to be used without having to prefix their name with
that of the package name.

O M A Smith - May not be reproduced without permission

Packagesasclasses 81

Thus without the us e clause, the program to process bank transactions would become:

with Ada. Text _lo, C ass_Account, Statenent;
procedure Main is

M/_Account : C ass_Account . Account ;

bt ai n : C ass_Account . Money;
begi n

St at ement (My_Account);

Ada. Text _| 0. Put ("Deposit £100.00 into account");
Ada. Text _| 0. New_Li ne;

Cl ass_Account . Deposi t (My_Account, 100.00);

St at ement (My_Account);

Ada. Text _| o. Put ("Wt hdraw £80. 00 from account");
Ada. Text _| 0. New_Li ne;

Cl ass_Account. Wthdraw(My_Account, 80.00, Cbtain);
St atement (My_Account);

Ada. Text | o. Put ("Deposit £200.00 into account");
Ada. Text _| 0. New_Li ne;

Cl ass_Account . Deposi t (My_Account, 200.00);

St at enent (My_Account);

end Mai n;

Note: Some program guidelines will ban the use of ause clause.

6.7.1 Touse or not to usetheuse clause

Using ause clause Not using ause clause

Program writing is simplified. A program must explicitly state which
package the component is taken from.

Confusion may arise asto which This can reduce the possibility of

package the item used is a component of. | program error due to accidental misuse.

6.7.2 The package St andar d

InAdatheclause‘'wi t h St andard; use Standard;’ isimplicitly added to the start of each program unit.
The specification for the package St andar d is shown in Appendix C, Section C.4. This package contains
definitions for the operators +, - , *, / , etc. However, the package St andar d cannot be directly changed by a
programmer.

6.7.3 Positioning of wi t h and use in a package declaration

Any wi t h and use clausesthat appear before a specification of a package areimplicitly included for the body of
the package. If components of the with’ed and used packages are only used in the body of a package, then the
clauseswi t h anduse need only be specified for the body. For example, if in the class Account only the body
of the package used the package Pack _Usef ul then it could bewritten as:

O M A Smith - May not be reproduced without permission

82

Packages as classes

package C ass_Account is

-- rest of specification
end Cl ass_Account;

with Pack_Useful ;

use Pack Useful;

package body C ass_Account_Oher is
-- rest of inplenentation

end d ass_Account;

One consequence of this approach isthat the user of the package need not know what packages are used by the
implementation code.

6.7.4 Conflict in namesin a package

6.8

A user may wish to use packages that contain items with the same name. For example, a user of the class
Cl ass_Account asorequirestousetheclassCl ass_Account _ot her . In both classes the name of the type
that is used to declare an instance of the classisAccount . By prefixing the type name with the package name the
conflict is resolved.

with O ass_Account, C ass_Account_ O her;
use O ass_Account, Cass_Account O her;
procedure Main is

My_Account : Gl ass_Account . Account ;
O her _Account :C ass_Account _O her. Account;
begi n

Deposit(My_Account, 100.00);--statenent in C ass_account
Deposit(My_Account, 100.00);--statenment in Cl ass_account ot her
end Mai n;

Note: Overload resolution is used to resolve which package the procedure st at enent isimplementedin.

Mutators and inspectors

The methods in a class can either be inspectors or mutators. The role of each of these methodsisillustrated in the
table below:

Method isa Role of method Example from classAccount
I nspector Does not change the state of | Bal ance

the object.
Mutator Changes the state of the|Wt hdraw

object. Deposi t

O M A Smith - May not be reproduced without permission

Packagesasclasses 83

6.9 Typeprivate

In the specification of the classAccount seenin Section 6.3.4, thetype of Account ispri vat e. This restricts
auser of an instance of the typeto the following operations:

Elaboration of an instance of the type.

Assigning an instance of the type to another instance of the type.
Comparing instances of the type for equality or inequality.
Passing an instance of the type to a procedure of function.

A user of the type is prevented from reading or changing the internal contents other than by the actions of
methodsin the class.

6.9.1Typelimted private

A user can be further restricted in the operations that they can perform on an instance of Account by declaring it
aslimted private. Thisremovesthe user's ability to assign or compare an instance of the type by default.
Naturally if in the class Account the comparison operations for equality or inequality are provided, then these
definitions will be used and will override the restriction. For example, if in the classAccount thetype Account
weredefinedasl i mited private, auser of aninstance of an Account would be prevented from writing
the following:

with Cl ass_Account;
use C ass_Account;
procedure Main is

My_Account : Account;
Q her _Account: Account;
ot ai n . Proney;
begi n
Deposit(My_Account, 100.00);
O her _Account := My_Account; --Copy and
Wt hdrawm & her _Account, 100.00, Obtain);--Wthdraw 100. 00
O her _Account := My_Account; --Copy agai n and
Wt hdrawm(& her _Account, 100.00, Obtain);--Wthdraw 100. 00
end Mai n;

If Account intheclassAccount hadbeenmadel i mit ed pri vat e, its specifications would be:

package C ass_Account is
type Account is limted private;

-- Methods (functions and procedures)

private
type Account is limted record
Bal ance_OF : Money := 0.00; --Anmobunt i n account
end record;

end C ass_Account;

Note: Therecord declaration in the private part of the classisalso of | i mi t ed type.
InAda83theuseoflimntedin:
type Account is limted record
i snot allowed.

O M A Smith - May not be reproduced without permission

84 Packages as classes

The more traditional reason for making a type limited is that a copy operation will not produce the expected
result for an instance of the type. Chapter 16 describes such atype that is built using dynamic storage.
The table below summarizesthe allowable usesof pri vate andl i m ted pri vat e types.

Operation involving private [imted private

Assignment) X

Comparison using = and/ = by default o) X

Parameter passing O O(see note)
Note: To pass an object as a parameter, a copy is not necessarily made.

6.10 I nitializing an object at declaration time

In Adait is possible to initialize an object when it is declared, although unfortunately there are restrictions to this
initialization. Essentially there are two strategies that can be employed. These strategies are:

) Use adiscriminant to specify aninitial value. The use of discriminantsis fully covered in Section 7.4.

) Use an assignment statement to set the object to a specific value.

For example, the following modified class Account uses both these approaches to initialize an object on
declaration.

package Cl ass_Account is
subtype Money is Float;
subtype Proney is Float range 0.0 .. Float'Last;
type Account(Nunmber: Natural:= 0) is private;

procedure Statenent(The:in Account);

procedure Deposit (The:in out Account; Amount:in Pnoney);

procedure Wthdraw(The:in out Account; Anmount:in Proney;

Get: out Pnoney);

function Balance (The:in Account) return Mney;

procedure New Number (The: in out Account; Nin Natural);

function New Account(N:in Natural;

Ampunt :in Pnoney:=0.0) return Account;

private

type Account (Nunber: Natural:= 0) is record

Bal ance_Of : Float := 0.00;

end record;

end Cl ass_Account;

6.10.1 By discriminant

Here atype can be given adiscriminant so that awhole family of types may be declared. The discriminant valueis
held in an instance of the type. Section 7.4 describes in more detail the use of discriminants.
For example, to setMy_Account with aspecific account number the following code is written:

with C ass_Account, Statenent;

use C ass_Account;

procedure Main is
My_Account: Account (10001);

begi n
Deposit(My_Account, 200.00);
St at enent (My_Account);
New_Nurber (My_Account, 10002);
St at enent (My_Account);

end Mai n;

Note: Thediscriminant value 10001 in the declaration of an instance of Account .
The use of the procedure St at enent defined above.

O M A Smith - May not be reproduced without permission

Packagesasclasses 85

which when run, will produce:

M ni statenent: Account £ 10001
The anpbunt on deposit is £200.00

M ni statenent: Account £ 10002
The anpbunt on deposit is £200.00

6.10.2 Restrictions

The following restrictions apply, however:

) Only discrete objects or access values may be used as the discriminant value. If an access valueis used
then the type must be limited.

) To change the discriminant value the whole record structure must be changed.

Thus the implementation of the procedure New_Nunber that allocates a new account number is:

procedure New Nunmber(The: in out Account; Nin Natural) is
begi n

The : = Account'(N, The.Bal ance_Of);
end New_Number ;

Note: The whole record structure needs to be changed to change the discriminant. Chapter 7 discusses
r ecor d initialization in more detail.
6.10.3 By assignment

In this case the object is assigned an initial value when it is declared. For example, the following code sets
My_Account with an account number and initial balance:

with C ass_Account, Statenent;
use C ass_Account;
procedure Main is
My_Account : Account := New_ Account(10001, 20.0);
begi n
St at enent (My_Account);
end Mai 3;

which when run, will produce:

M ni statenment: Account £ 10001
The anpunt on deposit is £20.00

O M A Smith - May not be reproduced without permission

86 Packages as classes
6.10.4 Redtrictions
The following restrictions apply, however.
) Asan assignment is used, the type may not be limited.

) The effect of the assignment statement may have undesirabl e consequences. For an explanation of
these consequences, see Section 17.4.

6.11 A personal account manager

One of the applications on a PDA (Personal Digital Assistant) isa PAM (Personal Account Manager). The PAM
provides facilities for recording the transactions that take place on the user’ s bank account. An example of the use
of the PAM is shown below:

[a] Deposit

[b] Wthdraw

[c] Balance

I nput selection: a

Amount to deposit : 10.00

[a] Deposit
[b] Wt hdraw
[c] Balance

I nput selection: b
Anount to withdraw : 4.60

[a] Deposit
[b] Wthdraw
[c] Balance

I nput selection: c

Bal ance is 5. 40

The program can be constructed using two classes: Account shown in Section 6.3.4 and a new class TUl that
will implement the text interface. The responsibilities of the classTUI are:

M ethod Responsihility

Menu Set up the menu that will be displayed to the user. Each menu
item is described by a string.

Event Return the menu item selected by a user of the TUI.

Message Display a message to the user.

Di al og Solicit aresponse from the user.

O M A Smith - May not be reproduced without permission

Packagesasclasses 87

The Ada specification of the class TUI is:

package Class_TUl is

type Menu_ltemis (M1, M2, M3, M4, MQit);
type TU is private;

procedure Menu(The:in out TU; M, M, M3, Md:in String);
function Event(The:in TU) return Menu_ltem
procedure Message(The:in TU ; Mes:in String);
procedure Dialog(The:in TU; Ms:in String; Res:out Float);
procedure Dialog(The:in TU; Mes:in String; Res:out |nteger);
private
-- Not a concern of the client of the class
end Cass_TU ;

For example, if an instance of the TUlI had been declared with:

Screen : TU ;

then, to setup the menu system:

[a] Print
[b] Calculate

I nput sel ecti on:

the following code sequence would be used:

Menu(Screen, "Print", "Calculate”, "", "");

Note: Null or empty menu items are not displayed.
A string may be of any length. However, to store a string the receiving object must be of the correct
size. Ada strings are fully discussed in Section 8.8.

The user’s response to this menu is elicited with the function event . The function event returns an
enumeration representing the menu item selected. For example, if the user selected option [b] then the code:

case Event(Screen) is
when M1 => --Print
when M2 => --Calcul ate

associated with label M_2 would be obeyed.

Note: The selected menu itemisindicated by an enumerationM_1 for menu item 1, M_2 for menu item 2, etc.

A programmer can display a message onto the TUl by using the procedure message which has the text to be
output as its second parameter. Likewise, a programmer can initiate a dialog with the user by using the procedure
di al og that returns afloating point number. The TUl currently only supports dialogs that solicit a floating point
number or integer number.

The fragment of code below illustrates the use of message and dialog interactions in a program which converts
milesto kilometres.

Message(Screen, "Distance converter");

Di al og (Screen, "Enter distance in mles", Mles);

Message(Screen, "Distance in Kilonetres is " &
Float' Inage(Mles * 1.6093));

Note: The operator & concatenates two strings into a single string. For example, "Hel l 0" & " " &
"wor | d" deliversthesinglestring” Hel | o wor | d".

O M A Smith - May not be reproduced without permission

88 Packages as classes

In constructing the main program for the personnel account manager, a nested function f | oat _i mage is
used to simplify the construction of the program.

with Ada. Fl oat _Text |l o, Cass_Account, Cass_TU ;
use Ada.Float_Text_lo, Cass_Account, Cass_TU;
procedure Main is

User . Account; --The users account
Screen D TU --The di splay screen
Cash . Money; --

Recei ved : Mbney; --

The nested function FI oat _| nage converts a floating point number into an Ada string. This function is
provided so that the format of the number may be controlled.

function Float _Image(F:in Float) return String is

Res : String(1 .. 10); --String of 10 characters
begi n
Put(Res, F, 2, 0); --2 digits - NO exp

return Res;
end Fl oat _I mage;

Note: The declaration of a string of 10 charactersis filled with the character representation for the floating
point number r es.

Theprocedure‘Put (res, f, aft=>2, exp=>0);’' convertsa floating point number into a
string.

O M A Smith - May not be reproduced without permission

Packagesasclasses 89

The main body of the program processes the option selected by the user.

begi n
| oop
Menu(Screen, "Deposit", "Wthdraw', "Bal ance", "");
case Event(Screen) is
when M1 => --Deposi t
Di al og(Screen, "Anpunt to deposit", Cash);
if Cash <= 0.0 then
Message(Screen, "Mist be >= 0.00");
el se
Deposit(User, Cash);
end if;
when M 2 => -- Wt hdraw
Di al og(Screen, "Anmpunt to withdraw', Cash);
if Cash <= 0.0 then
Message(Screen, "Mist be >= 0.00");
el se
Wthdrawm User, Cash, Received);
if Received <= 0.0 then
Message(Screen, "Not enough noney");
end if;
end if;
when M 3 => --Bal ance
Message(Screen, "Balance is " &
Fl oat _I mage(Bal ance(User)));
when M Quit => --Exit
return;
when ot hers => --Not used
Message(Screen, "Programerror"); - - 00ps
end case;
end | oop;
end Mai n;
6.12Class TUI

Thefull specification for the classTUI is:

package Class_TU is

type Menu_ltemis (M1, M2, M3, M4, MQit);
type TU is private;

procedure Menu(The:in out TU; ML, M2, M3, Md:in String);

function Event(The:in TU) return Menu_ltem

procedure Message(The:in TU; Mes:in String);

procedure Dialog(The:in TU; Mes:in String; Res:out Float);

procedure Dialog(The:in TU; Mes:in String; Res:out |nteger);
private

type TU is record

Selection : Menu_ltem:= M Quit;

end record;

end Cl ass_TUl;

In the implementation of the classTUI the most complex method is nenu. This method is implemented as a
procedure that writes out the menu for the TUI and reads the user’s response. It will only complete when a valid
response has been received from the user. In the implementation of the procedure the technique of procedural
decomposition is used to simplify the code.

In procedural decomposition, a large body of code is split into several procedures or functions. This helps to
reduce complexity making construction and maintenance easier.

O M A Smith - May not be reproduced without permission

90 Packages as classes

with Ada. Text _l o, Ada.Fl oat_Text_lo, Ada.lnteger_Text_Io;
use Ada.Text _lo, Ada.Float_Text _lo, Ada.l|nteger_Text |o;
package body C ass_TU is

procedure Menu(The:in out TU; M, M, M3, Md:in String) is

Sel ecti on . Character;
Val i d_Response : Bool ean : = Fal se;

Asauser may inadvertently select a null menu item, the procedure Set _Response is used to disallow such
an action.

procedure Set_Response(Choice:in Menu_ltem Mes:in String) is

begin
if Mes /="" then --Al |l owabl e choi ce
The. Sel ecti on : = Choice; Valid_Response := True;
end if;

end Set_Response;

Theprocedure Di spl ay_Menu_| t emdisplays onto the TUI only non null menu items.

procedure Di splay_Menu_ltem(Pronpt, Nanme:in String) is
begin
i f Nane/="" then
Put (Pronpt & Nane); New_Line(2);
end if;
end Display_Menu_ltem

The main body of the procedure displays the menu on the screen and receives the selected menu choice from
the user. If an invalid response is received the menu is re-displayed and the user is asked again to select a menu
item.

begin -- Menu

whi |l e not Valid_Response | oop
Di splay_Menu_ltem("[a] ",
Di splay_Menu_lten{ "[b] ",
Di splay_Menu_Ilten{ "[c] ",
Di splay_Menu_lten("[d] ",
Put ("I nput selection: "); Get(Selection); Skip_Line;
case Selection is

ML
M
VB
V&

—

when "a' | "A => Set_Response(M1, M);
when 'b'" | 'B => Set_Response(M2, M);
when '¢' | 'C => Set_Response(M3, M3);
when 'd" | 'D => Set_Response(M4, M4);
when 'e' | 'E => Set_Response(MQit, "Qit");
when ot hers => Val i d_Response : = Fal se;

end case;

i f not Valid_Response then
Message(The, "Invalid response");

end if;

end | oop;
end Menu;

The function Event returnsthe user’s selection.

function Event(The:in TU) return Menu_ltemis
begi n

return The. Sel ecti on;
end;

O M A Smith - May not be reproduced without permission

Packagesasclasses 91

The procedure Message writes a string onto the screen.

procedure Message(The:in TU; Mes:in String) is
begi n

New_Li ne; Put(Mes); New_Line;
end Message;

The procedure Di al og solicits aresponse from the user.

procedure Dialog(The:in TU; Mes:in String; Res:out Float) is

begi n
New Line(1l); Put(Mes & " : ");
Get(Res); Skip_Line;
end Di al og;
procedure Dialog(The:in TU; Mes:in String; Res:out Integer) is
begi n
New Line(1l); Put(Mes & " : ");
CGet (Res); Skip_Line;
end Di al og;

end C ass_TUl;

Note: In this case the response must be a floating point number or an integer number. Other overloaded

procedures can be provided for different forms of dialog.

6.13 Self-assessment

) Why should a program be split into many packages?

° What isaclass?

) How do you declare an instance of aclassin Ada?

° What is the difference between the declaration of aclass and the declaration of an instance of that
class?

) When an instance of aclassisdeclared, what happens?

° What is contained in aclass?

) How can a user of aclass request the execution of a method/function in that class?

) What are the advantages of holding data and the code that operates on the data together?

) Should afunction in a class be private? Explain your answer.

) Should adataitem in aclass be public? Explain your answer.

) How should an implementor of a class allow access to instance attributes contained in an object?

O M A Smith - May not be reproduced without permission

92 Packages as classes
6.14 Exercises

Construct the following classes:

° Account_with_overdraft
Construct a class which represents an account on which a customer is allowed to go overdrawn. Y ou
should restrict the amount the customer is allowed to go overdrawn. The methods of this class are:

M ethod Responsibility

Bal ance Deliver the balance of the account.

Deposi t Deposit money into the account

Set _Overdraft Limt Set the overdraft limit.

St at enent Print astatement of the current balance of
the account.

W t hdr aw Withdraw money from the account.

° Cinema Performance Attendance
A classPer f or mance, aninstance of which represents the seats at a particular showing of afilm, has

the following methods:

Method Responsibility

Book_seat s Book n seats at the performance.

Cancel Unbook n seats.

Sal es Return the value of the seats sold at this
performance.

Seats_Free Return the number of seatsthat are still
unsold.

Thus on an instance of Per f or mance the following actions can be performed:

Book a number of seats

Find out the number of unsold seats at the performance
Cancel the booking for n seats.

Return the value of the seats sold at this performance.

° Library Book
A classto represent abook in alibrary, such that the following operations can be processed:

(@) Loan the book.
(b) Mark the book as being reserved. Only one outstanding reservation is allowed on a book.

(c) Askif abook can beloaned. A book can only beloaned if it isnot already on loan or is not
reserved.

(d) Returnthe book.

O M A Smith - May not be reproduced without permission

Packagesasclasses 93

Construct the following program:

° Cinema
A program to deal with the day-to-day administration of bookings for acinemafor asingle day. Each
day there are three separate performances. an early afternoon performance at 1pm, an early evening
performance at 5pm and the main performance at 8.30pm.

The program should be able to handle the booking of cinema seats for any of these three performances
and supply details about the remaining seats for a particular performance.

Hints:
) Usetheclass TUI.
) Use three instances of the class Performance.
° Use a case statement.
) Use a procedure to process transactions on a particular performance.

O M A Smith - May not be reproduced without permission

/ Data structures

This chapter explores the use of data structures. A data structure is used to hold a collection of related data
items. This is implemented Ada with the construct r ecor d. However, data structures are a low-level
construct and in many instances, the use of a class will enable better quality code to be produced. As was
seen in the previous chapter ar ecor d is used to hold the hidden instance attributesin a class.

7.1 Therecord structure

In the construction of a program it is convenient to group like data items together. For example, details about a
person may consist of:;

) The person’s name.
) Their height in centimetres.
° Their sex.

The record structure can be used to group these three distinct data items together into a new type called
Per son. For example, the above description of a Person can be defined as follows:

Max_Chs : constant := 10;

type Gender is (Fenrale, Male);
type Height _Cmis range 0 .. 300;
type Person is record

Nare : String(1 .. Max_Chs); --Nane as a String

Hei ght : Height_Cm:= 0; --Height in cm

Sex . Gender; --Gender of person
end record;

Then an instance of aPer son can be declared using the declaration:

M ke . Person;

Thisis similar to a class declaration as seen in the previous chapter. However, all the members of the data
structure are visible to a user of the object M ke.

7.2 Operationson adata structure

The. notation isused to access individual members of a data structure. For example, to set up a description of the
person m ke, the following code can be used.

M ke. Nane = "M ke
M ke. Hei ght : = 183;
M ke. Sex = Ml g

O M A Smith - May not be reproduced without permission

Data structures 95

This initialization can be more elegantly expressed using a record aggregate which is then assigned to the

object m ke.
M ke ;= (Name=> "M ke ", Height=> 183, Sex=> Mal e);
Note: The construct:
(name => "M ke ", height => 183, sex => Male)

isarecord aggregate.

Therecord aggregate can also be defined using the absolute position of the arguments or a mixture of absolute
and named arguments. For exampl e, the following three assignments are all equal in effect.

Corinna := ("Cori nna 171, Fermal e) ;
Corinna : = (Nanme=> "Corinna ", Sex=> Ferual e, Height=> 171);
Corinna := ("Cori nna ", Sex=> Fenal e, Height=> 171);
Note: A record aggregate must have all its components specified even if some @mponents have default
values. Once a named parameter in an aggregate has been used, all parameters to the right must also
be named.

If there is only one member of the record aggregate then it must still be enclosed in brackets.

A data structure may be compared for equality or assigned. For example, using the declarations:

Corinna, Mke, Mranda : Person;
Tal | er . Person;

the following code can be written:

M ke = (Name=>"M ke ", Hei ght=>183, Sex=>Male);
Cori nna: = (Name=>"Cori nna ", Height=>171, Sex=>Fenul e);
M randa: = (Nane=>"Mranda ", Height=>74, Sex=>Fenule);
Taller := MKke;

if mke = Taller then
Put("M ke taller"); New_Line;

end if;

if Mke /= Taller and Corinna /= Taller then
Put ("M randa taller"); New_Line;

end if;

7.2.1 Other operations allowed on data structures

Chapter 12 describes how new meanings for the inbuilt operators in Ada can be defined. Using these techniques to
define an additional meaning for > between instances of aPer son would allow the following to be written:

if Mke > Corinna then

Put ("M ke taller"); New_Line;
el se

Put ("Corinna taller"); New_Line;
end if;

O M A Smith - May not be reproduced without permission

9%
7.3

7.4

Data structures

Nested r ecor d structures

A data structure declaration may be nested as in the following record declaration for abus:

type Bus is record

Driver : Person; --Bus driver
Seats : Positive; --Nunber of seats on bus
end record;

London : Bus;

Individual components are accessed using the . notation as follows:

London. Dri ver. Nane = "Jane "
London. Dri ver . Sex = Femal e;
London. Dri ver. Hei ght : = 168;
London. Seat s = 46;
Note: The repeated . is used to access first the Dri ver and then the data members Nane, Sex and

Hei ght .

However, arecord aggregate may also be used as shown below:

London := (("Jane ", 168, Fenmle), 46);

Discriminantsto records

A record type may have a parameter (discriminant) whose value may be an instance of a discrete type or access
type. Access types are fully described in Chapter 15. For example, the data structure for a person can be defined
with adiscriminant which specifies the number of charactersfor the St r i ng. This new definition for a Per son
is shown below:

type Gender is (Female, Male);
type Height _Cmis range 0 .. 300;
subtype Str_Range i s Natural range 0 .. 20;

type Person(Chs: Str_Range) is record --Nane | ength
Name : String(1 .. Chs); --As String
Hei ght : Hei ght _Cm = 0; --Height in cm
Sex . Gender; - - Gender
end record;
Note: The discriminant is a component of the record.

In the declaration of an instance of a Per son the length of the St r i ng used for a person’s name is specified
after the type name as follows:

M ke . Person(4); - - Const r ai ned
Cori nna: Person(7); - - Const r ai ned
Younger: Person(10); - - Constrai ned

O M A Smith - May not be reproduced without permission

Data structures 97

Then an assignment to an instance of Per son is:

M ke = (4, Name=>"M ke" , Hei ght=>183, Sex=>Ml e);
Corinna: = (7, Nanme=>"Corinna", Height=>171, Sex=>Fenul e);
Note: The value of the discriminant must be specified in the record aggregate.

However, M ke, Cor i nna and Younger are not of the same type so the assignment:

Younger := Corinna; -- Fail at run-tine

will fail at run-time as the discriminants of the record are not identical. The object Younger containsa St ri ng
of length of 10 whilst the object Cor i nna containsa St ri ng of length 7.

7.5 Default valuesto a discriminant

A discriminant to a type may have a default value. If a value is not specified with the declaration of a
discriminated type then it is an unconstrained discriminated type. An instance of an unconstrained discriminated
type may be assigned or compared with other unconstrained discriminants of the same type name.

For example, if the data structure Per son isnow defined as;

type Gender is (Female, Male);

type Height _Cmis range 0 .. 300;

subtype Str_Range i s Natural range 0 .. 20;

type Person(Chs: Str_Range := 0) is record --Length of nane

Nane : String(1 .. Chs); --Nane as String
Hei ght : Height_Cm := 0; --Height in cm
Sex . Gender; - - Gender

end record;

then the following code can be written;

decl are
M ke . Person; --Unconst rai ned
Cori nna: Person; --Unconstrai ned
Younger: Person; --Unconstrai ned

begi n
M ke = (4, Name=>"M ke" , Hei ght=>183, Sex=>Mal e);
Corinna:= (7, Nane=>"Corinna", Height=>171, Sex=>Fenul e);
Younger : = Corinna;

if Corinna = Younger then
Put ("Corinna is younger"); New_Line;
end if;
end;

Note: It would still be an error to write:
Corinna: =(10, name=>"Cori nna", hei ght =>171, sex=>Fenal e) ;
asthelength of "Corinna" isnot 10 characters.

O M A Smith - May not be reproduced without permission

98 Data structures

7.5.1 Constrained vs. unconstrained discriminants

Using the last definition of type Per son:

Declaration

The obj

ect M ke is | Comment

M ke: Person;

Unconstrained ThevariableM ke may be

compared with or assigned any
other instance of Per son.

M ke: Person(

4); | Constrained May only be assigned or

compared with another
Person(4).

7.5.2 Restrictions on a discriminant

A discriminant must be a discrete type or access type. If it is an access type then the record must be limited. This
unfortunately means that a Fl oat cannot be used as a discriminant to arecord.

7.6 Variant records

There will be occasions when a data structure contains data items that are mutually exclusive. For example, in a
description of aperson who may bealLect ur er or aSt udent the data members are:

Data member Belongsto Description
Nane Both a Lecturer The name of the person.
and a Student

Cl ass_Size | Lecturer The size of the group that the lecturer
teaches.

Ful | _Time Student Whether or not the student is full-time or
part-time.

Gr ade The mark out of 100 that the student

gains at the end of the course.

In this example the storage for Cl ass_Si ze can overlay all or part of the storage for Ful | _Ti me and
Gr ade asthe components:

° Class Size
° Full_Time and Grade

of the data structure will not be used simultaneously.

This can be visualized as:

role -> Student
role -> Lecturer

Nane

Ful | _Tinme gr ade

Name

Cl ass_Si ze

O M A Smith - May not be reproduced without permission

Data structures 99

In Adaavariant record allows two or more data items to occupy the same physical storage. This will result in
a lower memory usage for the data in a program. However, access to the variant components must be carefully
controlled to prevent information being stored or extracted as the wrong type. For example, if the record
represents a lecturer then it should not be possible to access the component Ful | _Ti ne as thisis only present
when the record represents a student. Adawith its strict typing will prevent such occurrences.

The data structure to represent either alecturer or astudent is defined as:

type COccupation is (Lecturer, Student);
type Mar k is range 0 .. 100;
subtype Str_Range is Natural range 0 .. 20;
type Person(Chs : Str_Range :=0;

Rol e: Cccupation: =Student) is record

Nane : String(1 .. Chs); --Nane as string
case Role is --Variant record
when Lecturer => -- Renenber storage overlaid
Cl ass_Si ze: Positive; --Si ze of taught class
when Student =>
G ade ;. Mark; --Mark for course
Full _Tine : Boolean := True; --Attendance node
end case;

end record;

Note: If one discriminant item is given a default value than all discriminant items that follow must also be
given a default value.

Using the above declaration of Per son allows the following assignments to be made:

decl are
M ke : Person; --Unconstrai ned
Clive: Person; --Unconstrai ned
Brian: Person(5, Student); --Constrai ned
begi n

M ke :=(4, Lecturer, Nanme=>"M ke", O ass_Size=>36);
Aive:=(5, Student, Nane=>"Cive", Gade=>70, Full_Ti me=>True);
-- insert --

end;

In Ada, this process is safe as the compiler will check and disallow access to a variant part which is not
specified by the discriminant. For example, if the following statements were inserted at the point - - i nsert -
- above, they would be flagged asinvalid at either compile-time or run-time.

Invalid statement Reason

Cive. Rol e: = STUDENT Not allowed to change just a discriminant as this
would allow data to be modified/extracted as the
wrong type.

Detectable at compile-time.

M ke. G ade: = 0 Access to a component of the data structure
which is not active. Mike is a lecturer and hence
has no grade score.

Detected at run-time.
Brian := (5, Lecturer, The object Br i an is constrained to be a student.
Name=>"Bri an", Detectable at compile-time.
Cl ass_Si ze=>36) ;

O M A Smith - May not be reproduced without permission

100 Data structures
7.7 Limited records

If arecord is limited then the compiler will prevent assignment and comparison of an instance of the record. For
example, with the declaration:

type Person is limted record

Name : String(1 .. Max_Chs); --Nane as a String
Hei ght : Height_Cm:= 0; --Height in cm
Sex . Gender; --Gender of person
end record;
M ke . Person;

Cori nna: Person;

Thefollowing code will fail to compile:

M ke := Corinna; --Fails to conpile as record is limted

if Corinna = Mke then --Fails to conpile as record is linmted
Put ("This is strange"); New_Line;

end if;

7.8 Data structurevs. class

The table below summarizes the differences between a class and adata structure.

Data structure | Class
A user of the construct can directly access 0] X
and change the internal structure.
Can be used where anormal type can be 0] o]
used.
Code to manipul ate the data encapsul ated X o
with the construct.
Representation of the dataitemsis hidden X o
from the user.

Thusto provide data hiding, a class must be used.

7.9 Sdf-assessment

) Explain how you can access an individual component of arecord.

) What are the major differences between aclassand an Adar ecor d?

) Isthe use of variant records safe in Ada? Explain your answer.

° What isthe difference between an unconstrained and a constrained record declaration?

O M A Smith - May not be reproduced without permission

Data structures 101

7.10Exercises
Construct the following:

° An Adarecord to describe the computer you are using. This should include for example: the amount of
main memory, the amount of cache memory, the amount of disk space.

Y ou may need a coding scheme for the size of memory components, as in the case of disk space this can
be avery large number.

° Generalize thisrecord so that it can hold details about many different types of computer. Include a
variant part to allow for the following different types:

° A computer used for word processing, with no network devices or multimedia components.
° A multimedia computer with sound and video capability.
° A workstation with a network and file server connections.

O M A Smith - May not be reproduced without permission

8 Arrays

This chapter introduces arrays that implement a collection facility for objects. With this facility, objects
are stored and retrieved using an index of adiscretetype.

8.1 Arraysascontainer objects

An array is a collection of objects that can be accessed using an instance of a discrete type. For example, the
number of computer terminalsin five rooms could be described with the following declaration:

Conputers_In_Room: array (1 .. 5) of Natural;

Note: Comput er s_I| n_Roomis a collection of Nat ur al numbers and the integer numbers 1 through 5
are used to select a particular object in this collection.
The compiler will check that the subscript is valid. If it cannot be checked directly, code should be
inserted which will perform the check at run-time. The exception Const rai nt _error israised if
the index is out of bounds.

The number of terminalsin each room can be recorded in the collection Conput er s_| n_Roomby using an
array index to select a particular computer room. For example, to set the number of computersin room 1 to 20, 2
to 30, 3t0 25, 4to 10 and 5 to 15, the following code can be used:

Conputers_In_Room(1) := 20;
Conputers_In_Room(2) := 30;
Conputers_I n_Room(3) := 25;
Conput ers_I n_Roon(4) := 10;
Conputers_I n_Room(5) := 15;

This can be visualized diagrammatically as shown in Figure 8.1.

1 2 3 4 5 Index used to access contents of collection
conputers_I n_Room

20| 30| 25| 10| 15

Figure 8.1 Diagrammatic representation of an array.

Once information about the number of computers in each room has been set up, it can be printed with the
following code:

for I inl1l .. 5 1o0p
Put ("Conputers in room"); Put(I, Wdth=>1); Put(" is ");
Put (Conputers_ln_Room(l), Wdth=>2); New_Line;

end | oop;

O M A Smith - May not be reproduced without permission

Arrays 103

which when combined with appropriate declarations and run, would produce the following results:

Conputers in rooml is 20
Conputers in room2 is 30
Conputers in room3 is 25
Conputers in room4 is 10
Conputers in room5 is 15

In the example above, any | nt eger object can be used as an index to the array. This freedom may lead to
program errors when a value other than the intended subscript is used. Unfortunately such an error would not be
detected until run-time. To alow Ada to perform strict type checking so that such an error may be caught at
compile-time, a separate type for the bounds of the array can be defined. Thisis achieved by defining arange type
that is then used to describe the bounds of the array. For example, the previous object Conput er s_I n_Room
could have been defined as:

type Roons_Index is range 1 .. 5;
type Roonms_Array is array (Rooms_lndex) of Natural;

Conputers_I n_Room : Roons_Array;

In the declaration the following types and subtypes have been defined:

Type/ Subtype Description
Rooms_i ndex A type used to define an object that is used to index
the array.
Rooms_arr ay A typerepresenting the array.

The range of elements in the array is defined by Rooms Index or Roons_Array' Range. In Ada the
attribute' Range givesthe bounds of an array object or array type. For example, using the above declarations, the
attribute' Range would have the following values.

Attribute Description Value
Roons_ar ray' Range Equivalent to the range 1..
Roonms_array' First .. 5

Roons_array' Last
Conput ers_I n_Room Range | Asabove

Note: The type of the elements of the range will of course be Roons_| ndex.

Using the above types andsubtypes, thef or loop which prints the number of computers in each room would
now become:

Conputers_I n_Room : Roons_array;
-- Set up contents of Conputers_|In_Room

for I in Conmputers_In_Room Range | oop

Put ("Conputers in room"); Put(Integer(l), Wdth=>1);

Put (" is "); Put(Conmputers_In_Room(l), Wdth=>2); New_Line;
end | oop;

Note: Astheindexi tothef or | oop isnow of type Roons_r ange it must be converted to an | nt eger
before it can be output using the procedure Put . Mechanisms to output objects of different discrete
typeswill be explored later in Chapter 18.

O M A Smith - May not be reproduced without permission

104 Arrays

8.2

8.3

A compile-time error message will be generated if the programmer incorrectly uses the above mechanism to
index the array, for example, when using an object which is neither of type Room_ i ndex nor a subtype of
Room i ndex.

Attributesof an array

Asarraysin Adaare self-describing, various attributes can be extracted from an instance of an array. For example,
with the following declarations for the array Mar ks :

type Marks_I ndex is new Character range 'a' .. 'f';
type Marks_Array is array (Marks_lndex) of Natural;
Marks : Marks_Array;

anumber of attributes can be extracted:

Attribute Description Value

Mar ks' Lengt h A Universal integer representing the number of 6
elementsin the one dimensional array.

Mar ks' Fi r st Thefirst subscript of the array whichis of type ta'
Mar ks_Range

Mar ks' Last The last subscript of the array which is of type Cf
Mar ks_Range

Mar ks' Range Equivalent to "a'l. !
Marks' First .. Marks'Last

Note: Thiswould also betruef or Mar ks_Array' Lengt h etc.

A fuller description of the attributes that can be extracted from an object or type are given in Section B.2,
Appendix B.

A histogram

A program to print a histogram representing the frequency of individual letters occurring in a piece of text can be
developed by first implementing a class that performs the following operations on an instance of aHi st ogr am

Method [Responsibility

Add_To [Add acharacter to the histogram, recording the updated total number of characters.
Put Write a histogram to the output source representing the currently gathered data.
Reset Clear any previously gathered data, setting variousinternal objectsto an initial state.

Using the class Hi st ogr amthat has been implemented in the package Cl ass_Hi st ogr am code can be
written which will produce a histogram of the frequency of characterstaken from the standard input:

O M A Smith - May not be reproduced without permission

Arrays 105

with Ada. Text | o, C ass_Hi stogram
use Ada. Text_lo, C ass_Hi stogram
procedure Main is
Ch: Char act er; --Current character
Text _Hi stogram Hi st ogram - - Hi st ogram obj ect
begi n
Reset (Text _Hi st ogram ; --Reset to enpty
while not End_OF _File | oop --For each line
whil e not End_O _Line | oop --For each character
CGet (Ch); --Get current character
Add_To(Text _Histogram Ch); --Add to histogram
end | oop;
Ski p_Li ne; --Next |ine
end | oop;
Put (Text Hi stogram); --Print histogram
end Mai n;

The classhi st ogr amis defined by the following package specification:

package C ass_Hi stogramis
type Hi stogram is private;
Def _Height : constant Positive := 14;
procedure Reset(The:in out Histogram);
procedure Add_To(The:in out Hi stogram A Ch:in Character);
procedure Put(The:in H stogram Height:in Positive: =Def _Hei ght);
private
type Al phabet _|I ndex i s new Character range 'A .. 'Z';
type Al phabet _Array i s array (Al phabet_Index) of Natural;
type Hi stogram is record
Nurmber O . Al phabet _Array := (others => 0);
end record;
end d ass_Hi st ogram

The histogram is calculated using the individual letter frequencies that are stored in an array of Nat ur al s
indexed by the upper case letters ‘A" .. 'Z'. The implementation is simplified by allowing each letter to index
directly the frequency count for the letter.

In the implementation of the class hi st ogr am shown below, the procedure r eset is used to set the

individual frequency counts for each letter to O.

with Ada. Text _| o, Ada.Fl oat_Text _lo, Ada.Characters. Handli ng;
use Ada. Text_lo, Ada.Float_Text_lo, Ada.Characters. Handling;
package body C ass_Histogramis

procedure Reset(The:in out H stogram is
begi n

The. Nunber _OF := (others => 0); --Reset counts to O
end Reset;

The procedure Add_To uses the functions | s_Lower, To_Upper and | s_Upper which are contained in
the package Ada. Char act er s. Handl i ng. A full description of these functions can be found in Section C.7,
Appendix C.

O M A Smith - May not be reproduced without permission

106 Arrays

procedure Add_To(The:in out H stogram A Ch:in Character) is
Ch : Character;
begi n
Ch := A Ch; --As wite to ch
if Is_Lower(Ch) then -- Convert to upper case
Ch := To_Upper(Ch);
end if;
if I's_Upper(Ch) then --so record
decl are
C : Al phabet _Index := Al phabet I ndex(Ch);
begi n
The. Nunmber _OF (C) : = The. Nunber _O (C) + 1;
end;
end if;
end Add_To;

The histogram is displayed as a bar graph corresponding to the accuracy of the output device, which in thiscaseis
an ANSI terminal. The size of the histogram is set by the defaulted parameter Hei ght .

procedure Put(The:i n H stogram
Hei ght:in Positive: =Def _Height) is

Frequency . Al phabet _Array; --Copy to process
Max_Hei ght : Natural := 0; --(Observed max

begi n
Frequency := The. Nunber _OF; --Copy data (Array)
for Ch in Al phabet_Array' Range | oop --Find max frequency

i f Frequency(Ch) > Max_Hei ght then
Max_Hei ght : = Frequency(Ch);
end if;
end | oop;

if Max_Height > 0 then
for Ch in Al phabet_Array' Range loop --Scale to max hei ght
Fr equency(Ch) : =(Frequency(Ch) *Hei ght) / (Max_Hei ght) ;
end | oop;
end if;

for Row in reverse 1 .. Height loop --Each |line
Put(" | "); --start of line
for Ch in Al phabet _Array' Range | oop
i f Frequency(Ch) >= Row then

Put('*'); --bar of hist >= col
el se
Put (' '); --bar of hist < col
end if;
end | oop;
Put (" | "); New_Line; --end of line
end | oop;
Put (" A--imme i +"); New_Li ne;
Put (" ABCDEFGHI JKLMNOPQRSTUVWAKYZ "); New_Li ne;

Put (" * = (approx) ");
Put (Fl oat (Max_Hei ght) / Fl oat (Hei ght), Aft=>2, Exp=>0);
Put (" characters "); New_Line;
end Put ;
end d ass_Hi stogram

Note: By implementing the printing of the histogram as part of the package Cl ass_Hi st ogr am this
severely limits the cases when this code can be re-used.

O M A Smith - May not be reproduced without permission

Arrays 107
8.3.1 Putting it all together

When run with the following data:

Ada is a | anguage devel oped for the American Departnent

of Def ense.

Ada is named after the first programmer Ada (Byron) Lovel ace

who hel ped Charl es Babbage with his work on the anal ytical engine.
She was the daughter of the poet Lord Byron.

the program would produce the following output:

* * * * % * k% * k%
*k *hkkkk*k *kkkk*k *k*k

*kkkkkkkk *kkkkx kkk L

I * I
I * I
I * I
| > I
* %
B |
* %
R |
|** * k% |
I**** ** Kk % I
|**** * **%x k% |
I I
I I
I I

ABCDEFGHI J KLMNOPQRSTUVWKYZ * =2.071

Note: The exact number of characters shown for each * in the bar graph is guaranteed to be accurate only
for the most frequently occurring character.

O M A Smith - May not be reproduced without permission

108 Arrays
8.4 Thegame of noughtsand crosses

The children’s game of noughts and crosses is played on a three-by-three grid of squares. Players either play X or
O. Each player takes it in turn to add their mark to an unoccupied square. The game is won when a player has
three of their marks in a row either diagonally, horizontally or vertically. If no unoccupied square remains, the
gameisadraw (Figure 8.2).

X'sfirst move O’sfirst move X’ssecond move | O’s second move
X X X X X|10| X
(@] (0] (@]
X’'sthird move O’sthird move X’sfourth move
X|10|X X|10|X X|10|X
As can be seen
X X X to go first is a
o olo olo [x clear advantage.

Figure 8.2 A game of noughts and crosses

A program to display the current state of a game of noughts and crosses between two contestants is devel oped
with the aid of aclassBoar d. The operations, Add, Val i d, St at e, Cel | , and Reset , can be performed on an
instance of Boar d.

Theresponsihilities of these methodsis as follows:

Method Responsihility

Add Add the player's mark to the board. The player's move is
specified by a number in the range 1 to 9 and their mark by a
character.

Val i d Return true if the presented move is valid. The method checks
that the move isin the range 1 to 9 and that the specified cell is
not occupied.

State Returns the state of the current game. Possible states are: W n,
Pl ayabl e, and Dr aw.

Cel | Returns the contents of a cell on the board. This method is
included so that the code that displays the board can be separated
from the code that manipul ates the board.

Reset Reset the board back to aninitial state.

O M A Smith - May not be reproduced without permission

Arrays 109

8.4.1 Theclass Board

The specification for the classBoar d is defined by the package Cl ass_boar d asfollows:

package Cl ass_Board i s

type Board is private;
type Gane_State is (Wn, Playable, Draw);

procedure Add(The:in out Board; Pos:in |nteger;
Pi ece:in Character);
function Valid(The:in Board; Pos:in Integer) return Bool ean;
function State(The:in Board) return Gane_State;
function Cell(The:in Board; Pos:in |Integer)
return Character;
procedure Reset(The:in out Board);
-- Not a concern of the client
end d ass_Board;

8.4.2 Implementation of the game

Using the above package specification, the following code will facilitate the playing the game of noughts and
crosses between two human players. The procedure Di spl ay will display the state of the board onto the user’s
terminal. By factoring out the code to display the board, from the class Boar d the class can be re-used in other
programs that may use a different form of display, for example a GUI (Graphical User Interface).

w th C ass_Board, Ada.Text_lo, Ada.Integer_Text_lo, D splay;
use Cl ass_Board, Ada. Text_lo, Ada.lnteger_Text |o;
procedure Main is
Pl ayer : Character; --Either 'X or 'O
Gne . Board; --An instance of Cl ass Board
Move . I nteger; --Move from user
begi n
Pl ayer :="'X; --Set pl ayer
while State(Gane) = Playable | oop --\Wile playable
Put (Player &" enter nove (1-9) : "); -- nove
Get (Move); Skip_Line; -- CGet nove
if Valid(Gane, Move) then --Valid
Add(Gane, Myve, Player); -- Add to board
Di spl ay(Gane); -- Display board
case State(Gane) is --Gane is
when Wn =>
Put (Player & " wns");
when Pl ayable =>
case Pl ayer is --Next pl ayer
when ' X => Player :='0,; -- 'X =>"'0
when ' O => Player :='X; --'0 =>"'X
when others => null; --
end case;
when Draw =
Put("It's a draw ");
end case;
New_Li ne;
el se
Put ("Move invalid"); New_Line; --for board
end if;
end | oop;
New_Li ne(2);
end Mai n;

O M A Smith - May not be reproduced without permission

110 Arrays

Note: That the case statement which effects the change between the player’s mark has a when ot hers
clause. Thisis required as in theory a pl ayer can take any character value. The code for this
‘impossible’ eventuality isthenul | statement.

The character object pl ayer holds a representation of the current player's mark, in this case either the
character' X' or' O . Theobjectpl ayer isinitially setto' X' , and after each player's move is changed to the
other player’s mark.

8.4.3 Displaying theBoar d

The procedure Di spl ay uses the method Cel | in class Boar d to help display a textual representation of the
board on the user’ sterminal. The procedure Di spl ay isimplemented asfollows:

with C ass_Board, Ada. Text_Io;
use C ass_Board, Ada. Text | o;
procedure Display(The:in Board) is

begi n
for I inl1 .. 9 1oop
Put(Cell(The, |));
case | is --after printing counter
when 3 | 6 => -- print Row Separ at or
New_Line; Put("--------- "), --
New_Li ne;
when 9 => -- print new line
New Li ne;
when 1| 2| 4| 5| 7| 8 = -- print Col separator
Put(" | *);
end case;
end | oop;
end Di spl ay;

The procedure Di spl ay prints the board on to the player’s terminal. The strategy for printing the board is to
print each cell followed by a character sequence appropriate for its position on the board. The text to be printed
after each square of the array sqr s has been printed is as follows:

Printed board showing | After printing cell: Text to be printed
array index of cell in array (Using Ada. Text _I o)
Sqgrs
1,2,4,5,7 and 8 Put(" | ");
1] 2] 3
--------- 3and 6 New_Li ne;
4|1 5] 6 Put("---------)
--------- New_Li ne;
71 81 9
9 New_Li ne;

O M A Smith - May not be reproduced without permission

Arrays 111
8.4.4 TheclassBoard

The full specification of the classBoar d isasfollows:

package O ass_Board i s

type Board is private
type Gane_State is (Wn, Playable, Draw);

procedure Add(The:in out Board; Pos:in |nteger;
Pi ece:in Character);
function Valid(The:in Board; Pos:in Integer) return Bool ean;
function State(The:in Board) return Gane_Stat e;
function Cell(The:in Board; Pos:in |Integer)
return Character;
procedure Reset(The:in out Board);

private
subtype Board_Index is Integer range 1 .. 9;
type Board_Array is array(Board_lndex) of Character;
type Board is record

Sqrs : Board_Array := (others =>"' "'); --Initialize
Moves : Natural = 0;
end record;
end Cl ass_Board;

The noughts and crosses board is represented by a single dimensional array of nine characters. The board is
initialized to all spaces with the assignment Board grid := (others => ' '). This style of
initialization is explained in Section 8.6 Initializing an array. In defining the noughts and crosses board the
following type and subtype are used:

Type/ Subtype Description

Boar d_|I ndex A subtype used to describe an index object used to access
an element of the noughts and crosses board.
By making Board_ I ndex a subtype of I nteger,
I nt eger s may be used as an index of the array.

Boar d_Array A type used to describe a noughts and crosses board.

The implementation of the classBoar d isdefined in the body of the package Cl ass_boar d asfollows:

package body C ass_Board is

The procedure add adds a counter either the character' X' or' O to the board.

procedure Add(The:in out Board; Pos:in Integer;
Pi ece:in Character) is
begi n
The. Sgrs(Pos) := Piece;
The. Moves : = The. Moves + 1;
end Add;

O M A Smith - May not be reproduced without permission

112 Arrays

The functionsval i d returnst r ue if the square selected is not occupied by a previously played counter.

function Valid(The:in Board; Pos:in Integer) return Boolean is
begi n
return Pos in Board_Array' Range and then
The. Sqrs(Pos) ="' ';
end Val i d;

Note: Theuseof and t hen so that the check on the board is only made if the position isvalid.

The function Cel | returns the contents of a cell on the noughts and crosses board. This method is used to
interrogate the state of the board, without having to know how the state is stored. Using this method, printing of
the state of the board can be separated from the code that manipulates the board.

function Cell (The:in Board; Pos:in Integer) return Character is
begi n

return The. Sqrs(Pos);
end Cell;

The procedure Reset setsthe state of the board back to itsinitial state.

procedure Reset(The:in out Board) is

begi n
The. Sgr s = (others => "' "); --All spaces
The. Mbves : = 0; --No of noves
end Reset;

The Procedure St at e returns the current state of play as represented by the board. A two-dimensional array
Al'l _W n_Li nes holds the co-ordinates of the eight possibles win lines. The co-ordinates in this array are used
to find any line that contains three cells either containing all X’sor O’s.

function State(The:in Board) return Gane_State is
subtype Position is Integer range 1 .. 9;
type Wn_Line is array(1 .. 3) of Position;
type All _Wn_Lines is range 1 .. 8§;
Cells: constant array (All_Wn_Lines) of Wn_Line :=
((1,2,3), (4,5,6), (7,8,9), (1,4,7),
(2,5,8), (3,6,9), (1,5,9), (3,5,7)); --All win lines
First : Character;

begi n
for Pl in Al _Wn_Lines | oop --All Pos Wn Lines
First := The.Sqrs(Cells(PwW)(1)); --First cell in line
if First /=" " then -- Looks pronising
if First = The.Sqgrs(Cells(PwW)(2)) and then
First = The.Sgrs(Cells(Pw)(3)) then
return Wn; -- Found a win
end if;
end if;
end | oop;
if The. Moves >= 9 then --Check for draw
return Draw, -- Board full so draw
el se
return Pl ayabl e; -- Still playable
end if;
end State;

end d ass_Board;

O M A Smith - May not be reproduced without permission

Arrays 113

8.4.5 Putting it all together

When compiled and run, a possibl e interaction between two players could be asfollows:

X'sfirst move

O’sfirst move

X's second move

O’s second move

X] O] X X| O] X X| O] X

--------------------------- As can be seen
| X | | X | | X | to go first is a

--------------------------- clear advantage.
| Of Ol O} O] O X

8.5 Multidimensional arrays

Arrays can have any number of dimensions. For example, the noughts and crosses board could have been
represented by atwo-dimensional array asfollows:

Size TTT : constant := 3;

subtype Board_Index is Integer range 1 ..

type Board_Array is
array(Board_| ndex,

type Board is record

Size TTT;

Board_I ndex) of Character;

Sgrs : Board_Array := (others => (others =>"' "));
end record;
The: Board;
Note: The two-dimensional initialization of the board to spacesis as follows:

sqrs : Board_grid:=(others => (others =>" "));
Thistypeof initialization is explained in Section 8.6 Initializing an array.

With this representation of the board individual elements are accessed as follows:

The. Sgrs(1,2) :='X;
The. Sgrs(2,3) :="'X;
The. Sgrs(3,2) := "X ;

O M A Smith - May not be reproduced without permission

114 Arrays

Using the new representation of Boar d, aprocedure for displaying the contents of the board would now become:

procedure Display(The:in Board) is
begi n
for | in Board_Array' Range(1) | oop --For each Row
for J in Board_Array' Range(2) loop -- For each colum
Put (The.Sgrs(|,J)); -- display counter;
case J is -- columm postfix
when 1 | 2 => Put(" | ");
when 3 = nul | ;
end case;
end | oop;
case | is -- row postfix
when 1 | 2 => New_Line; Put("---------- "); New_Li ne;
when 3 => New_Li ne;
end case;
end | oop;
end Di spl ay;
Note: The statement nul | has no action, but is necessary as a statement must follow a when clause. The
clausewhen 3 cannot be omitted as this would leave the case statement not covering all the possible
valuesfor j .

8.5.1 An alternative way of declaring multidimensional arrays

Rather than declare the board as a two-dimensional array, it is also possible to declare the board as an array of
rows of the board. Thisis accomplished as follows:

Size TTT : constant := 3;
subtype Board_Index is Integer range 1 .. Size TTT;
type Board_Row is array(Board_lndex) of Character;

type Board_Array is array(Board_l ndex) of Board_Row ;
type Board is record

Sqrs : Board_Array := (others => (others ="' '));
end record;
The: Board;

Note: Thistechnique will scale to any number of dimensions.

Now to access the individual elements of the board a slightly different notation is used. The first subscript
selects the row and the second subscript selects the element within the row.

The. Sgrs(1)(2) :="'X;
The. Sqrs(2)(3) := "X ;
The. Sqrs(3)(2) :="'X;
Note: The initialization of the two-dimensional array is performed in the same way in both cases.

O M A Smith - May not be reproduced without permission

Arrays 115

8.5.2 Attributes of multidimensional arrays

Like single dimensional arrays, various attributes can also be extracted from multidimensional arrays. For
multidimensional arrays it is, however, necessary to specify which dimension is to be interrogated. This is
achieved by appending the appropriate dimension to the attribute. For example, to find the number of elementsin
the second dimension of the object Sqr s use The. Sqr s' Lengt h(2) . Section B.2, Appendix B lists attributes

that can be extracted from an object or type.

8.6 Initializing an array

A pixel on atrue colour computer screen is represented by the three primary colours: red, blue, and green. Each
colour has an intensity ranging from O (dark) to 255 (bright). This is the RGB additive colour model used by
computer terminals and TVs, which is different from the CYMB subtractive colour model used in printing. In
Ada, apixel could be represented by an array of three elements representing the intensities of the primary colours.
To represent the colour white, the intensity of each of the primary colours would be set to 255. A pixel can be
represented by the type Pi xel _Ar r ay asfollows:

type Col our is (Red, Geen, Blue);
type Intensity is range 0 .. 255;
type Pixel _Array is array(Colour) of Intensity;

A single point on the screen could be represented by the objectdot asfollows:

Dot . Pixel _Array;

which could be initialized to black or white with the following assignments:

(o 0 0); --Bl ack

Dot 9) ;
(255, 255, 255); --Wite

Dot

The values can be named by using the subscript to the array asfollows:

Dot := (Red=> 255, G een=>255, Bl ue=>255); --VWite

Anot her s clause can be used to let the remaining elements of the array take aparticular value asin:

Dot := Pixel _Array' (Red=>255, others=>0); --Red

Note: When the ot her s clause is used, and at |east one other element is given a value by a different means,
then the type of the constant must be specified. This is achieved by prefixing the constant with its type
name followed by a".

Using asimilar notation to that used in the case statement introduced in Section 3.8.1, a range of values may

also be specified:
Dot := (Red=>255, G een=>255, Blue=>0); --Yel | ow
Dot := (Red | Blue => 255, Geen=>0); --Purple
Dot := (Red .. Blue => 127); --Gey

O M A Smith - May not be reproduced without permission

116 Arrays

8.6.1 Multidimensional initializations

A cursor on ablack and white screen can be defined by the following declaration of an objectcur sor _styl e:

Bits_Cursor : constant Positive := 5;

type Bit is new Integer range 0 .. 1;

type Cursor_Index is new Positive range 1 .. Bits_Cursor;
type Cursor i s array(Cursor_Index,

Cursor I ndex) of Bit;

Cursor_Style : Cursor;

Black is represented by 1

White isrepresented by O

Figure 8.3 Black and white cursor.

The cursor as illustrated in Figure 8.3 could be set up in cur sor _st yl e with any of the following three
declarations:

® by initializing every cell in the cursor individually:

Cursor_Style := CQursor'((1, 0, 0, 0, 1),
(o, 1, 1, 1, 0),
(o, o, 1, o, 0),
(0, 1, 1, 1, 0),
(1, 0, 0, 0, 1));
Note: The prefix to the array constant is optional in this case.
® by using anot her s clauseto set up the white elements:
Cursor_Style := Cursor' (1=> (1=>1, 5=>1, others => 0),
2=> (2..4 =>1, others => 0),
3=> (3=>1, others => 0),
4=> (2..4 =>1, others => 0),
5=> (1=>1, 5=>1, others => 0));

® by using | clausesto combine any identical initializations:

Cursor_Style := Cursor' (1/5=> (1|5 =>1, others => 0),
2|4=> (2..4=>1, others => 0),
3 =>(3 =>1, others =>0));

In aprogram using a colour monitor, the cursor could have been described as follows:

Bits Cursor: constant Positive := 5;

type Col our is (Red, Geen, Blue);

type Intensity is range 0 .. 255;

type Pixel _Array is array(Colour) of Intensity;

type Cursor_Index is new Positive range 1 .. Bits_Cursor;
type Cursor i s array(Cursor_I ndex,

Cursor _|I ndex) of Pixel _Array;
Cursor_Style : Cursor;

O M A Smith - May not be reproduced without permission

Arrays 117

The following code would be used to initialize the cursor to the colour grey:

Cursor_Style : =

Cursor'(1|5=> (1|5 => (others=>127), others => (others=>0)),
2| 4=> (2..4=> (others=>127), others => (others=>0)),
3 = (3 => (ot hers=>127), others => (others=>0)));

8.7 Unconstrained arrays

In earlier sections, the types used to represent an array have been constrained types. These can be used to create
only objects that have the specific bounds defined by the type declaration. Ada allows a user to define a type for
an array that can be constrained to represent a whole family of instances of arrays, where each member of the
family can potentially have different bounds. This mechanism is required when an array of arbitrary size isto be
passed as a parameter to a procedure or function. For example, afunction sumthat sums the contents of an array

passed to the function, can be written asfollows:

function Sum(List:in Nunbers_Array) return Integer is
Total : Integer := 0;
begi n
for I in List'range |oop --Depends on # of elenents
Total := Total + List(|);
end | oop;
return Total ;
end Sum

Thetype Nunber s_Ar r ay isan unconstrained array that has the following definition:

type Nunbers_Array is array (Positive range <>) of Integer;

This defines atype that can be used to elaborate array objects with Posi t i ve type bounds. For example, an
instance of thetype Nunber s_Ar r ay can be declared asfollows:

Conputers_In_I n_Room : Numbers_Array(513..519) := (2,2,2,3,2,1,3);

Note: The gecific bounds of Conput ers_I n_Room an instance of Numbers_Array needs to be
specified in the declaration.

8.7.1 Slicesof an array
A slice of aone-dimensional array can be obtained by selecting elements from a contiguous range from within the
array. For example, to select the computers in rooms 517 to 519 from the object Conput er s_I n_Roomthe

following slice of the array can be extracted: Conmput er s_I n_Roons(517 .. 519).

Note: A slice can only be taken from a one-dimensional array.

O M A Smith - May not be reproduced without permission

118 Arrays

8.7.2 Putting it all together

A package Pack_Types is defined so that any program unit may use the constrained type declaration for
Nunber s_Ar r ay to declare arrays of thistype.

package Pack_Types is
type Nunbers_Array is array (Positive range <>) of Integer;
end Pack_Types;

Note: No body isrequired as the specification has no implementation part.

Thisisthen used by aprogram to illustrate the use of the functionsum

with Ada. Text _| o, Ada.Integer_Text_Ilo, Pack_Types;
use Ada. Text | o, Ada.lnteger_Text _|o, Pack_Types;
procedure Main is
Conput ers_I n_Room : Nunbers_Array(513..519) :=(2,2,2,3,2,1,3);

-- The function sum

begi n
Put ("The total nunber of conputers is: ");
Put (Sum(Conputers_ln_In_Room)); New_Line;

Put ("Conputers in roons 517, 518 and 519 is: ");
Put (Sunm{ Computers_In_In_Room(517 .. 519))); New_Line;
end Mai n;

When compiled with the body of the function sum the above program when run would print the results:

The total nunber of conputers is: 15
Conputers in roons 517, 518 and 519 is: 6
8.8 Strings

Thetype St ri ng isapredefined, unconstrained array whose definitionis:

type String is array (Positive range <>) of Character;

O M A Smith - May not be reproduced without permission

8.9

Arrays 119

Thistypeisdefined in the package St andar d listed in Section C.4, Appendix C. A limitation of the St ri ng
typeisthat in the declaration of each instance of a string the number of characters that are to be assigned to that
particular string must be specified. For example, the following program writes out the name and address of the
University of Brighton.

procedure Main is
type String is array (Positive range <>) of Character;
Institution : String(1 .. 22);

Addr ess : String(l .. 20);
Ful | _Address: String(1l .. 44);

begi n
Institution := "University of Brighton";
Addr ess := "Brighton East Sussex";
Full _Address:= Institution & ", " & Address;
Put (Ful | _Address); New_Li ne;

end Mai n;

When run, thiswould print:

Uni versity of Brighton, Brighton East Sussex

Note: The concatenation operator & isused to deliver thejoin of two one-dimensional arrays.

Dynamic arrays

In Ada the bounds of an array need not be fixed at compile-time, as they can be specified by an object whose
value is not fixed until run-time. Such an array is known as a dynamic array. However, once elaborated, the
bounds of the dynamic array cannot be changed. Unlike many other languages, Ada allows a dynamic array to be
returned as the result of a function. For example, a function Rever se_St ri ng can be written which reverses
the characters passed to it. An implementation of the functionRever se_St ri ng isasfollows:

function Reverse _String(Str:in String) return String is

Res : String(Str'Range); - - Dynanmi ¢ bounds
begi n
for I in Str'Range | oop
Res(Str'First+Str'Last-1) := Str(|);
end | oop;

return Res;
end Reverse_String;

8.9.1 Putting it all together

The above functionRever se_St ri ng isusedinthefollowing program to illustrate the use of adynamic array:

with Ada. Text _lo, Reverse_String; use Ada.Text_|o;
procedure Main is
begi n

Put (Reverse_String("madami'm adant)); New_Line;
end Mai n;

O M A Smith - May not be reproduced without permission

120 Arrays

When run, thiswould deliver the following results:

mada nmli nmadam

Note: Even though dynamic arrays can be created, they can only be used to store an object that is type
compatible. In particular, the number and type of the elementsin the receiving object must be the same
asinthedelivered object.

8.10 A name and address class

A class for managing a person’s name and address has the following responsibilities.

M ethod Responsibility

Set Set the name and address of a person. The name and address
is specified with a/ character separating each line.

Del i ver _Line Deliver the n'th line of the address as a string.

Li nes Deliver the number of linesin the address.

The specification for the classis asfollows:

package Cl ass_Nane_Address is
type Name_Address i s tagged private;

procedure Set(The: out Nane_Address; Str:in String);
function Deliver_Line(The:in Name_Address;

Line:in Positive) return String;
function Lines(The:in Nanme_Address) return Positive;

private
Max_Chs : constant := 200;
subt ype Li ne_I| ndex is Natural range 0 .. Max_Chs;

subtype Li ne_Range is Line_Index range 1 .. Mx_Chs;

type Name_Address i s tagged record

Text : String(Line_Range); --Details
Length : Line_lndex := 0; --Length of address
end record;

end d ass_Nane_Addr ess;

O M A Smith - May not be reproduced without permission

Arrays 121

In the implementation of the class the method set stores the string given as a parameter into the instance
attribute Text . A check is made to see if the string is too long. If it is, the string is truncated and the procedure
recalled recursively with the shortened name.

package body C ass_Name_Address is
function Spaces(Line:in Positive) return String;

procedure Set(The: out Nane_Address; Str:in String) is
begi n
if Str'Length > Max_Chs then
Set(The, Str(Str'First .. Str'First+Max_Chs-1));
el se
The. Text(1 .. Str'lLength) := Str
The. Length : = Str' Lengt h;
end if;
end Set;

The function Del i ver _Li ne returns a string representing the n'th line of the address with a staggered left
margin. Spaces for the staggered |eft margin are calculated and delivered by the function Spaces.

function Deliver_Line(The:in Nanme_Address;
Line:in Positive) return String is
Line On : Positive := 1
begi n
for 1 in 1 .. The.Length |oop
if Line_ On = Line then

for J inl .. The.Length | oop
if The.Text(J) ="'/' then
return Spaces(Line_On) & The. Text(l .. J-1);
end if;
end | oop;
return Spaces(Line_On) & The. Text(I..The.Length);
end if;
i f The. Text(l) = "'/' then Line_On := Line_On+1; end if;
end | oop;
return "";

end Del i ver _Line;

The number of lines in an address is delivered by the function Li nes. This function counts the number of ' /'
charactersinthe string Text .

function Lines(The:in Name_Address) return Positive is
No Lines : Positive := 1
begi n
for I in 1 .. The.Length |oop
if The.Text(l) = '/' then No_Lines := No_Lines + 1; end if;
end | oop;
return No_Lines
end Li nes;

O M A Smith - May not be reproduced without permission

122 Arrays

The function Spaces deliversastring of Li ne spaces.

function Spaces(Line:in Positive) return String is
Spaces_Are : String(1 .. Line) := (others=>" ");
begi n
return Spaces_Are;
end Spaces;

end C ass_Name_Addr ess;

8.10.1 Putting it all together

A program to illustrate the use of the classNanme_Addr ess is shown below:

with Ada. Text _l o, Ada.lnteger_Text_lo, C ass_Nane_Address;
use Ada. Text_lo, Ada.lnteger_Text_Io;
procedure nain is

Name : Nane_Addr ess;
Address : String :="A N Oher/Brighton/East Sussex/UK";
begi n

Set (Nane, Address);
Put (Address); New_Line; Put("There are ");
Put (Lines(Name)); Put(" lines"); New_Line;
for I in 1 .. Lines(Nane)+1 |oop
Put ("Line #"); Put(l); Put(" ");
Put (Deliver_Line(Name, 1)); New_Line;
end | oop;
end Main;

which, when compiled and run, will produce the following output:

A N. O her/ Bri ght on/ East Sussex/ UK

There are 4 |ines

Li ne # 1 A N. & her
Line # 2 Bri ght on
Line # 3 East Sussex
Line # 4 UK

Line # 5

Note: The standard library packages Ada. Strings. Bounded and Ada. Stri ngs. Unbounded

provide an elegant mechanismfor handling strings of variable length. Section C.8, Appendix C liststhe
member s of the package Ada. St ri ngs. Bounded.

8.11 An electronic piggy bank

Arrays are made up of objects of any type including instances of classes. For example, to implement a program to
deal with asmall bank’ s transactions, aclassPi ggy_Bank can be defined which has the following methods:

M ethod Responsibility

Deposi t Deposit money into a named person’s account.

W t hdr aw Withdraw money from a named person’ s account.
Bal ance Obtain the balance in a named person’ s account.
New_Account | Allocate anew account number.

O M A Smith - May not be reproduced without permission

Arrays 123

The Ada specification of the classPi ggy_Bank isasfollows:

with C ass_Account;
use C ass_Account;
package C ass_Piggy_Bank is

type Piggy_Bank is private; --C ass
subtype Money is C ass_Account. Money; --Make visible
subtype Proney is Cl ass_Account. Pnmoney; --Make visible

procedure New Account(The:in out Piggy_Bank; No:out Positive);
procedure Deposit (The:in out Piggy_Bank; No:in Positive;
Amount ;i n Pnoney);
procedure Wthdraw (The:in out Piggy_Bank; No:in Positive;
Anmount : i n Pnoney; Get:out Proney);
function Bal ance(The:in Piggy_Bank;
No:in Positive) return Mney;
function Valid(The:in Piggy_Bank;
No: in Positive) return Bool ean;

private
No Accounts : constant := 10;
subtype Accounts_lndex is Integer range O .. No_Accounts;
subtype Accounts_Range i s Accounts_lndex range 1 .. No_Accounts;
type Accounts_Array is array (Accounts_Range) of Account;
type Piggy_Bank is record
Accounts: Accounts_Array; --Accounts in the bank
Last : Accounts_Index := 0; --Last account
end record;
end d ass_Pi ggy_Bank;
Note: The number of accounts that can be held is fixed and is defined by the constant No_Accounts. In

Chapter 17, ways of storing a variable number of (in this case instances of Account) objects are

explored.

Thefollowing code usesthe class Pi ggy_ Bank to perform transactions on anewly allocated account:

with Ada. Text _io, C ass_Piggy_Bank, Statenent;
use Ada. Text_io, C ass_Piggy_Bank;
procedure Main is

Bank_Accounts: Piggy_Bank; --Alittle bank

Cust omer . Positive; - - Cust oner

ot ai n : Money; --Money processed
begi n

New_Account (Bank_Accounts, Custoner);
if Valid(Bank_Accounts, Customer) then

St at enent (Bank_Accounts, Custoner);

Put ("Deposit £100.00 into account"); New_Li ne;
Deposi t (Bank_Accounts, Custoner, 100.00);
St at enent (Bank_Accounts, Custoner);

Put ("Wt hdraw £60. 00 from account"); New_Li ne;
Wt hdraw(Bank_Accounts, Custoner, 60.00, Cbtain);
St at enent (Bank_Accounts, Custoner);

Put ("Deposit £150.00 into account™); New_Li ne;
Deposi t (Bank_Accounts, Custoner, 150.00);
St at enent (Bank_Accounts, Custoner);
el se
Put (" Cust onmer nunber not valid"); New_Line;
end if;
end Mai n;

O M A Smith - May not be reproduced without permission

124 Arrays

Note: The procedure St at enent isshown later at the end of this section.

When compiled and run, the code would produce the following output:

M ni statenent for account # 1
The anopunt on deposit is _ 0.00

Deposit _100.00 i nto account
M ni statement for account # 1
The anpbunt on deposit is _100.00

Wt hdraw 60.00 from account
Mni statement for account # 1
The anpunt on deposit is _40.00

Deposit _150.00 i nto account
M ni statenent for account # 1
The anpbunt on deposit is _190.00

In the implementation of the package Cl ass_Pi ggy_Bank shown below, the procedure New_Account
allocates an account number to a new customer.

package body C ass_Pi ggy_Bank is

procedure New_Account (The:in out Piggy Bank; No:out Positive) is
begi n
if The.Last = No_Accounts then
rai se Constraint_Error;
el se
The. Last := The. Last + 1;
end if;
No : = The. Last;
end New_Account;

Note: The exception Const r ai nt _Err or israised if no new accounts can be created. Chapter 14 shows
how a user defined exception can beraised.

The procedure and functions for Deposi t, W t hdr aw and Bal ance call the appropriate code from the
package Cl ass_Account .

procedure Deposit (The:in out Piggy_Bank; No:in Positive;
Amount:in Pnoney) is
begi n
Deposi t (The. Account s(No), Anount);
end Deposit;

procedure Wthdraw(The:in out Piggy_Bank; No:in Positive;
Anount :in Pnoney; Get:out Proney) is
begi n
W thdraw(The. Accounts(No), Amount, GCet);
end Wt hdraw,

function Bal ance(The:in Piggy_Bank;
No:in Positive) return Money is
begi n
return Bal ance(The. Accounts(No));
end Bal ance;

O M A Smith - May not be reproduced without permission

Arrays 125

The function valid checks the validity of an account number.

function Valid(The:in Piggy_Bank;
No:in Positive) return Boolean is
begi n
return No in 1 .. The. Last;
end Val i d;
end C ass_Pi ggy_Bank;

The procedure St at enent printsamini statement for the selected account. Thisisimplemented asfollows:

with Ada. Text _l o, Ada.lnteger_Text_lo, Ada.Float_Text_Io,
Cl ass_Pi ggy_Bank;
use Ada.Text _lo, Ada.Integer_Text_lo, Ada.Float_Text |o,
Cl ass_Pi ggy_Bank;
procedure Statenent(Bank:in Piggy_Bank; No:in Positive) is
I n_Account : Money;
begi n
Put ("M ni statenment for account #");
Put (No, Wdth=>3); New_Li ne;
Put ("The anbunt on deposit is £");

I n_Account := Bal ance(Bank, No);
Put (I n_Account, Aft=>2, Exp=>0);
New_Li ne(2);

end Statenent;

Note: By not having any input or output statements in the package Class Piggy_Bank the package may bere-
used easily in other programs.

8.12 Salf-assessment

) Can theindex to an array be of typereal ?

) How can a programmer reduce the possibility of using an incorrect subscript value?

) Arethere any restrictions on what type of objects can be used as array elements?

° Arethere any limitations on how many dimensions an array might have?

° How is an array of objects declared?

[What is the difference between the two declarations for Boar d_Ar r ay below, and how may an

individual character be accessed in both cases?

subtype Board_Index is Integer range 1 .. 3;
type Board_Array is
array(Board_l ndex, Board_Index) of Character;

subtype Board_Index is Integer range 1 .. 3;
type Board_Row is array(Board_lndex) of Character;
type Board_Array is array(Board_l ndex) of Board_Row ;

O M A Smith - May not be reproduced without permission

126 Arrays

8.13Exercises

Construct the following programs:
) A programto play the game noughts and crosses.

Using as a base the code for the noughts and crosses program, i mplement a complete program that
checksfor awin by aplayer. A winiswhen aplayer has three of their countersin arow, either
diagonally, horizontally or vertically.

° A program which maintains the records of booksin a small school library.

Each book in the library has a class mark which isanumber in the range
1—999. A person may:

(a) Take abook out of thelibrary.

(b) Return abook to the library.

(c) Reserve abook that isout on loan.
(d) Enquire asto the status of abook.

The program should be able to handle the recording and extracting of information required by the above
transactions. In addition, afacility should be included which will provide asummary about the status of
the booksin thelibrary.

Hints:
) Define the classBook to represent individual booksin thelibrary.
) DefineaclassLi br ary to represent the library. The hidden internal structure of Li br ary
contains an array of Books.
) Re-use the class TUI to display amenu.

O M A Smith - May not be reproduced without permission

9 Case study: Design of a game

This chapter ooks at the implementation of the game reversi. The problem is analysed using the fusion
methodology and from this analysis and design is developed a program to play the game of reversi
between two human players.

9.1 Revers

In the game of reversi two playerstake it in turn to add counters to a board of 8-by-8 cells. Each player has a stack
of counters, black one side and white the other. One player’s counters are placed white side up, whilst the other
player’s are black side up. The object of the game is to capture all your opponent's counters. You do this by
adding one of your counters to the board so that your opponent's counter(s) are flanked by two of your counters.
When you do this, the counters you have captured are flipped over to become your counters. If you can't capture
any of your opponent's counters during your turn, you must pass and let your opponent go.

The game is won when you have captured all your opponent's counters. If neither player can add a counter to
the board, then the player with the most counters wins. If the number of counters for each player is equal, then the
gameisadraw.

The initial starting position is set so that the 4 centre squares in the 8-by-8 board of cellsis asillustrated in
Figure 9.1.

0O
O ®

Figure 9.1 The 4 center squares of areversi board..
On areduced board of 4-by-4 cells agame might be asillustrated in Figure 9.2.

Black’s move White'smove

® O [Bl Bl J [Bl Bl J

O @ O|® OO0
Black’smove White's move Black’s move

O o O

oo o | BION[) [Bl Bl J

O Al J O Bl J O®|®

o o o

O M A Smith - May not be reproduced without permission

128 Case study: Design of a game

Black’smove
White cannot go and has No further moves can
to pass) O be made. Blacks wins
with 9 counters against
el white's 1
| B Bl
o o

Figure 9.2 A gameof reversi.

9.1.1 A program to play revers

9.2

A controller of the game (games master) asks each player in turn for a move. When amoveis received from a
player, the board is asked to validate the move. If thisisavalid move, the counter of the current player is added to
the board. The board is displayed and the new state of the board is evaluated. This process is repeated until either
the board is filled or neither player can make a move. The player making the last move is asked to announce the

result of the game.

The interactions by the controller with the system are shown in Figure 9.3

Board
[eNeoNe) (X X)
counter .o counter
Player 1 Player 2

NP

Figure 9.3 Interactions by the controller with the objectsin the system.

Analysis and design of the problem

Using adesign methodology based on a simplified version of fusion the above specification can be analysed and a
design created for an eventual implementation in Ada. In preparation for this, it is appropriate to identify the
objects and system actions from the written specification. An easy but incomplete way of identifying objects and
system actionsis to identify the major nouns and verbs. The nouns in the specification become the objects and the

maj or verbs become the system actions.
With the major nouns indicated in bold type and the major verbs in bold italic type, the specification for the

game reversi can now be read as:

In the game of reversi two playerstakeitinturntoadd countersto a board of 8-by-8 cells. Each player has

astack of counters black one side and white the other. One player’s counters are placed white side up, whilst the
other player’s are black side up. The object of the game isto capture all your opponent's counters. You do this

by adding one of your counters to the board so that your opponent's counter(s) are flanked by two of your
counters. When you do this, the counters you have captured are flipped over to become your counters. If you

can't capture any of your opponent'scounters during you turn, you must pass and let your opponent go.
The game iswon when you have captured all your opponent's counters. If neither player can add a counter

to the board, then the player with the most counters wins. If the number of counters for each player is equal,
then the gameisadraw.

O M A Smith - May not be reproduced without permission

Case study: Design of agame 129

A controller of the game (games master) asks each player in turn for amove. When amove is received from a
player the board is asked tovalidate the move. If thisisavalid move the counter of the current player is added
totheboard. The board isdisplayed and the new state of the board is evaluated. This process is repeated until
either the board is filled or neither player can make a move. The player making the last move is asked to
announce the result of the game.

The mgjor objects and verbsidentified are:

Objects (nouns) M essages (ver bs)

board add

game announce

cel ask

counter evaluated

player capture

game display
validate

The following messages are sent to individual objects:

boar d

pl ayer

Display arepresentation of the board.
Add acounter to the board.

Evaluate the current state of the board.
Validate a proposed move.

Announce the result of the game.
Ask for the next move.

cell

Add acounter into acell on the board.
count er

Display arepresentation of the counter.
Play

Play the game.

It ismore appropriate to deal with classes than to deal with objects. For example, Boar d is the class to which
the object boar d belongs. Using this approach the messages sent to these classes can be refined into the

following list:
| Class | M essage | Responsibility of method
[Boar d Add Add acounter into the board.
Check_Move Check if aplayer can drop a counter
into acolumn.
Content s Return the contents of acell.
Di spl ay Display arepresentation of the board.
Now_pl ayi ng Say who is how playing on the board.
Set _Up Populate the board with theinitial
contents.
St at us Evaluate the current state of the
board.
Pl ayer Announce Announcing that the player has either
won or drawn the game.
Get _Move Get the next move from the player.
My_Count er Return the counter that the player
plays with.
Set Set aplayer to play with a particular
counter.

O M A Smith - May not be reproduced without permission

130 Case study: Design of a game

[Cel | Add Add a counter to acell.
Di spl ay Display the contents of acell.
Flip Flip the contents of a cell.
Hol ds Return the contents of acell.
Initialize Initialize acell.
| Class | M essage | Responsibility of method
| Counter |Display Display acounter.
Flip Flip a counter.
Rep Return the colour of acounter.
Set Set a counter to be black/white.
[Gane [Pl ay | Play the game. |
Note: Some of the original messages (verbs) have been renamed to a mor e specific name when producing this
list.

9.3 Classdiagram

A class diagram for the game of draughtsis shown below in Figure 9.4

Player H—8{ Counter o—} cal

11 11

| Game

L Boad

Figure 9.4 Relationship between the classes in the game of four counters.

9.4 Specification of the Ada classes

The Ada class specifications for the above classes are implemented as fol lows:

Class | Ada specification

Game package d ass_Gane i s

type Gane is private;
procedure Flay(The:in Gane);
private

end dass_Qounter;

O M A Smith - May not be reproduced without permission

Case study: Design of agame 131

Counta ||package G ass_Counter is

type Qount er is private;

type Qunter_lour is (Back, Wite);

procedure Set(The:in out Gounter; Rep:in Gounter_Gol our);

procedure D splay(The:in Gounter);

procedure DO spl ay None(The:in Gounter);

procedure Hip(The:in out Counter);

function Rep(The:in Gounter) return Gounter_Qol our;
private

end dass_Qounter;

Player package dass_H ayer 1s
type Payer is private;

procedure Set(The:in out Payer; Cin Gounter_Qolour);

procedure Get _Mbve(The:in A ayer; Row Gol unm: out | nteger);

function M_Gounter(The:in Hayer) return Qunter;

procedure Announce(The:in P ayer; Wat:in Sate 0_Gane);
private

end d ass_R ayer;

Cdl package dass_ Gl is
type Gall is private;
type Gell_Holds is (CWite, CHack, Empty);

procedure Initialize(The:in out Call);

function Holds(The:in Gl) return Gll_Hlds;

procedure Add(The:in out Gell; P ayers Gounter:in Gounter);

procedure Dsplay(The:in Gll);

procedure Hip(The:in out Call);

function To @lour(Cin CGll_Holds) return Gounter_Ql our;
private

end dass Gl l;

Board package A ass_Board is

type Board is private;
type Sate 0 _ Gane is (RHay, Wn, Draw Lose);
type Mve Satus is (&, Invalid, Pass);

procedure Set_W(The:in out Board);
procedure Add(The:in out Board; X Y:in Integer;
Mve |s:in Mve Satus);
procedure Now A ayi ng(The:in out Board; Cin Gounter_Colour);
procedure O spl ay(The:in Board);
function Check _Mve(The:in Board; X Y:in Integer)
return Mve S at us;
function Satus(The:in Board) return Sate 0 _Gane;
function Gontents(The:in Board; X Y:in Integer)
return Gal | _Hol ds;
private

end d ass_Boar d;

O M A Smith - May not be reproduced without permission

132 Case study: Design of a game

9.5 Implementation of themain class Gane

Using the design carried out above, the specification of the classGane is:

with C ass_Board, Cass_Player, Cass_Counter;
use Cass_Board, Cass_Player, Cass_Counter;
package C ass_Gane is
type Gane is private;
procedure play(The:in out Gane);
private
type Player_Array is array(Counter_Col our) of Player;
type Gane is record

Rever si . Board; -- The pl ayi ng board
Contestant : Player_Array;
end record;

end d ass_Gane;

and the implementation is asfollows:

package body C ass_Gane is

procedure Play(The:in out Gane) is --Play reversi
Current _State : State O _Gane; --State of gane
Per son : Count er _Col our; --Current player
X Y . I nteger; - -Move
Move_|'s . Move_St at us; --Last nove is

begi n
Set _Up(The. Reversi); --Set up board
Set (The. Cont est ant (Bl ack), Bl ack); --Set player black
Set (The. Contestant (Wite), Wite); --Set player white

O M A Smith - May not be reproduced without permission

Case study: Design of agame 133

Current _State := Play; Person := Bl ack; --Black starts
Di spl ay(The. Reversi); --Initial board
while Current_State = Play | oop - -Pl ayabl e gane
Now_Pl ayi ng(The. Reversi, Person); --set player
| oop --Get nove

Get _Move(The. Cont est ant (Person), X, Y);

Move_l s: =Check_Move(The. Reversi, X, Y);--Validate
exit when Move |s=Ck or Myve_ | s=Pass; --K
end | oop;
Add(The. Reversi, X, Y, Mve_Is); --Add nove to board
Di spl ay(The. Reversi); --Di spl ay new board
Current_State := Status(The.Reversi); --State of play is
if Current_State = Play then --ls still playable
case Person is - -next player
when Bl ack => Person := Wite;
when White => Person := Bl ack;
end case;
end if;
end | oop; - -Next nove
Announce(The. Contestant (Person), Current_State); --Result
end Pl ay;

end d ass_Gane;

9.5.1 Running the program

Then to run the game the following procedureis used to send the message Pl ay to an instance of the classGane.

with O ass_Gane;
use d ass_Gane;
procedure Main is
A Gane : Gane;
begi n
Play(A Gane);
end Mai n;

9.5.2 Example of atypical game

A typical game might be:

O M A Smith - May not be reproduced without permission

134 Case study: Design of a game

Pl ayer X has 2 counters -
Pl ayer O has 2 counters

Pl ease enter nove X row columm: 4 6

Pl ayer X has 4 counters -

Pl ayer O has 1 counters
Pl ease enter nove O row col um:

Pl ayer X has 3 counters -

Pl ayer O has 3 counters
Pl ease enter nove O row colum: 6 6

L X xp x|
[ol X x| |
e e e I O B

Pl ayer X has 6 counters -

Pl ayer O has 1 counters
Pl ease enter nove Orow colum: 0 O

O M A Smith - May not be reproduced without permission

Case study: Design of agame 135

L b XX X
I 1 1ol X| X|
(I

Pl ayer X has 6 counters -
Pl ayer O has 1 counters

Pl ease enter nove X row columm: 6 4

L X X X
L XX X
[A I

Pl ayer X has 8 counters -
Pl ayer O has 0 counters
Pl ayer X has won

9.6 Implementation of the other classes

The main program isimplemented using the classes described earlier. The package Pack _Scr een isresponsible
for handling the machine specific action of clearing the screen. Using an ANSI terminal, its implementation is as
follows:

package Pack_Screen i s
procedure Screen_d ear;
procedure Screen_Hore;

private
Esc: constant Character := Character' Val (27);

end Pack_Screen;

--Hone cl ear screen
--Honme no clear screen

The implementation of this package uses ANSI escape sequences to implement these procedures. If an ANSI
compatible terminal is not available, the bodies of these procedures can be changed to implement an appropriate
alternative.

with Text lo; use Text |o;
package body Pack_Screen is
procedure Screen_Clear is
begi n
Put (Esc & "[2J");
end Screen_C ear;
procedure Screen_Hone is - - Hone
begi n
Put (Esc & "[0; OH");
end Screen_Hore;
end Pack_Screen;

--Term nal dependent 1/0
--Clear screen

- -Escape sequence

- -Escape sequence

The specification of the classCount er isasfollows:

O M A Smith - May not be reproduced without permission

136 Case study: Design of a game

package Cl ass_Counter is
type Counter is private;
type Counter_Colour is (Black, Wite);
procedure Set(The:in out Counter; Rep:in Counter_Colour);
procedure Display(The:in Counter);
procedure Display_None(The:in Counter);
procedure Flip(The:in out Counter);
function Rep(The:in Counter) return Counter_Col our;

private
type Counter is record
Col our: Counter_Col our; --Col our of counter
end record;

end d ass_Counter;

The procedure Set sets a counter to a specific colour.

wi th Ada. Text _| o;
use Ada. Text _lo;
package body Cd ass_Counter is
procedure Set(The:in out Counter; Rep:in Counter_Colour) is
begi n
The. Col our : = Rep;
end Set ;

The procedure Di spl ay andDi spl ay__None respectively display the contents of a counter or no counter.

procedure Display(The:in Counter) is
begi n
case The. Col our is
when Black => Put('X); --Representation of a black piece
when White => Put('O); --Representation of a white piece
end case;
end Di spl ay;

procedure Display_None(The:in Counter) is
begi n

Put (" '); --Representation of NO pi ece
end Di spl ay_None;

The procedure Fl i p flips a counter. By flipping a counter the other player’s colour is exposed, whilst the
procedure Rep returns the colour of the counter.

procedure Flip(The:in out Counter) is
begi n
case The. Col our is

when Bl ack => The. Col our := Wite; --Flip to Wite
when Wiite => The. Col our := Bl ack; --Flip to Black
end case;
end Flip;
function Rep(The:in Counter) return Counter_Colour is
begi n
return The. Col our; --Representation of the counter col our
end Rep

end C ass_Counter;

O M A Smith - May not be reproduced without permission

Case study: Design of agame 137

The specification for the classCel | which holds a counter is asfollows:

with C ass_Counter;
use Cass_Counter;
package Cass_Cell is
type Cell is private;
type Cell _Holds is (C Wite, CBlack, Enpty);

procedure Initialize(The:in out Cell);
function Holds(The:in Cell) return Cell _Hol ds;
procedure Add(The:in out Cell; Players_Counter:in Counter);
procedure Display(The:in Cell);
procedure Flip(The:in out Cell);
function To_Colour(Cin Cell_Holds) return Counter_Col our;
private
type Cell _Is is (Enpty_Cell, Not_Empty_Cell);
type Cell is record
Contents: Cell_ls := Enpty_Cell;
Item . Counter; --The counter
end record;
end C ass_Cel | ;

In the implementation of the package the procedure | ni t i al i ze setsthe contents of the cell to empty.

package body C ass_Cell is
procedure Initialize(The:in out Cell) is
begi n
The. Contents := Enpty_Cel |l ; --Initialize cell to enpty
end Initialize;

The procedure Hol ds returns the contents of the cell which is defined by the enumeration type
Cel | _Hol ds.

function Holds(The:in Cell) return Cell_Holds is

begi n
case The. Contents is
when Enpty_Cel | => --Empty
return Enpty; -- No counter
when Not Enpty Cell => --Count er
case Rep(The.ltem) is
when Wiite => return C Wite; -- white counter
when Black => return C Black; -- black counter
end case;
end case;
end Hol ds;

The next three procedures i mplement:

) Adding of anew counter into acell.
) Displaying the contents of acell.
) Flipping the counter in the cell to the other colour.

procedure Add(The:in out Cell; Players_Counter:in Counter) is
begi n

The := (Not_Enpty_Cel |, Pl ayers_Counter);
end Add;

O M A Smith - May not be reproduced without permission

138 Case study: Design of a game

procedure Display(The:in Cell) is

begi n
if The.Contents = Not_Enpty_Cell then
Di splay(The.ltem); --Display the counter
el se
Di spl ay_None(The.ltem); --No counter
end if;
end Displ ay;
procedure Flip(The:in out Cell) is
begi n
Flip(The.ltem); --Flip counter
end Flip;

The function To__Col our converts the enumeration Cel | _Hol ds to the enumeration Count er _Col our .
This method is required so that the contents of a Cel | can be processed as a Count er _Col our . The board
holds the colour of the current player. It is an error to ask for the colour of an empty cell.

function To_Col our(C:in Cell _Holds) return Counter_Col our is
begi n
case Cis --Conversi on of enum
when C White => return Wite;
when C Bl ack => return Bl ack;
when others => raise Constraint_Error;
end case;
end To_Col our;

end d ass_Cel | ;

Note: The code associated with the when others clause will never be executed.

The package Cl ass_Boar d is by far the most complex of the packages used in this implementation. As well
as severa visible functions and procedures, it also has several private functions and procedures. The main
complexity occursin the function Check _Move and the functionadd.

with Class Counter, Cass _Cell;
use Cass_Counter, dass_Cell;
package C ass_Board i s

type Board is private;
type State_ O _Gane is (Play, Wn, Draw, Lose);
type Move_St at us is (&, lnvalid, Pass);

procedure Set_Up(The:in out Board);
procedure Add(The:in out Board; X, Y:in |nteger;
Move_Is:in Muve_Status);
procedure Now_ Pl ayi ng(The:in out Board; C.in Counter_Col our);
procedure Display(The:in Board);
function Check_Mve(The:in Board; X Y:in |Integer)
return Myve_Stat us;
function Status(The:in Board) return State O _Gane;
function Contents(The:in Board; X Y:in |Integer)
return Cell _Holds;

O M A Smith - May not be reproduced without permission

Case study: Design of agame 139

private
Si ze: constant := 8; --8 * 8 Board
subtype Board_Index is Integer range 1 .. Size; --

type Board_Array is array (Board_lndex, Board_Index) of Cell;
type Score_Array is array (Counter_Col our) of Natural;
type Move_Array is array (Counter_Col our) of Mve_Status;

type Board is record

Sgrs : Board_Array; --Ganme board

Pl ayer : Count er _Col our; --Current Player

QOpponent : Counter_Col our; - - Opponent

Score . Score_Array; --Runni ng score

Last _Move: Move_Array; --Last nove is
end record;

end d ass_Board;

The body of Cl ass_Board contains specifications of functions and procedures which are used in the
decomposition of the methods of the classBoar d.

with Ada. Text _lo, Ada.l|nteger_Text |o, Pack_Screen;
use Ada.Text_lo, Ada.lnteger_Text_lo, Pack_Screen;
package body Cl ass_Board is

procedure Next(The:in Board; X Co,Y_Co:in out Board_I ndex;
Dir:in Natural; Res:out Bool ean);
function Find_Turned(The:in Board; X Y: in Board_Index)
return Natural;
procedure Turn_Counters(The: in out Board; X Y. in Board_| ndex;
Total: out Natural);
function No_Turned(The:in Board; O X O_.Y:in Board_I|ndex;
Dir:in Natural;
N:in Natural := 0) return Natural;
procedure Capture(The:in out Board; X Co, Y_Co:in Board_I| ndex;
Dir:in Natural);

The procedure set up populates the board with empty cells and theinitial central grid of four counters.

procedure Set_Up(The:in out Board) is

Bl ack_Counter: Counter; --A bl ack counter

Whi te_Counter: Counter; --A white counter
begi n

Set (Bl ack_Counter, Black); --Set bl ack

Set (White_Counter, Wite); --Set white

for Xin The.Sgrs'range(1) | oop
for Y in The. Sqrs' range(2) | oop

Initialize(The.Sgrs(X Y)); --To enpty
end | oop;
end | oop;

Add(The. Sqrs(Si ze/ 2, Sizel2), Bl ack_Count er

Add(The. Sqrs(Si ze/ 2, Size/ 2+1), \Wite_Counter

Add(The. Sgrs(Size/2+1, Sizel2), Whi t e_Count er

Add(The. Sqrs(Size/2+1, Size/2+1), Bl ack_Counter

The. Score(Black) := 2; The. Score(Wite) := 2;
end Set _Up;

—

O M A Smith - May not be reproduced without permission

140 Case study: Design of a game

The procedure Now_Pl ayi ng records the colour of the current player. This information is used by
subsequent methodsadd and Check _Mbve.

procedure Now_Pl ayi ng(The:in out Board; C.in Counter_Colour) is
begi n

The. Pl ayer 1= G --Pl ayer
case Cis - - Opponent
when White => The. Opponent : = Bl ack;
when Bl ack => The. Opponent := Wite;

end case;
end Now_Pl ayi ng;

The procedure Di spl ay displays a representation of the reversi board on the output device. For this
implementation of the game, the output deviceisan ANSI text-based terminal.

procedure Display(The:in Board) is
Dashes: String(1 .. The.Sgrs'Length*4+1) := (others=>'"-");

begi n
Screen_dCl ear; --Cl ear screen
Put (Dashes); New_Li ne; --Top
for X in The.Sqgrs'range(1l) | oop
Put ("]"); --Cells on line

for Y in The. Sgrs' range(2) | oop
Put (" "); Display(The.Sgrs(X,Y)); Put(" |");
end | oop;
New_Li ne; Put(Dashes); New_Li ne; --Bottom | i nes
end | oop;
New_Li ne;
Put ("Player X has ");
Put (I nteger(The. Score(Bl ack)), Wdth=>2);
Put (" counters"); New_Line;
Put ("Player O has ");
Put (I nteger(The. Score(Wiite)), Wdth=>2);
Put (" counters"); New_Line;
end Di spl ay;

The function Check__Move checks the validity of a proposed move on the board. This function is decomposed
into the function Fi nd_Tur ned which calculates the number of pieces that will be turned if amove is made into
the specified square.

function Check_Myve(The:in Board; X Y:in Integer)
return Move_Status is
begi n
if X=0and then Y = 0 then
return Pass;
elsif X in Board_lndex and then Y in Board_| ndex then
if Holds(The.Sgrs(X, Y)) = Enpty then
if Find_Turned(The, X, Y) > 0 then
return Cx;
end if;
end if;
end if;
return Invalid,
end Check Mve;

O M A Smith - May not be reproduced without permission

The function Fi nd_Tur ned finds the number
particular move. The strategy for Fi nd_Tur ned is

Case study: Design of agame 141

of the opponent’s counters that would be turned for a
to sum the number of opponent's counters which will be

flipped in each compass direction. For any position on the board there are potentially eight directions to check.

Thedirections areillustrated in Figure 9.5.

7 8 1
w| 4

6 |4 > | 2
\4

5 4 3

Figure 9.5 Compass direction to check when anew counter is added to the board.

function Find_Turned(The:in Board; X, Y: in Board_Ilndex)
return Natural is
Sum Natural := O; -- Total stones turned
begi n
if Holds(The.Sgrs(X, Y)) = Enpty then
for Dir in1 .. 8 loop --The 8 possible directions
Sum := Sum + No_Turned(The, X, Y, Dr);
end | oop;
end if;
return Sum --return total
end Fi nd_Tur ned;

The recursive function No_Tur ned counts the number of the opponent’s pieces that would be captured. This

may of course be zero.

function
Dir:in Natural;
N:in Natural := 0)
. Bool ean;

Cel | _Hol ds;
Count er _Col our;
Boar d_| ndex :
Boar d_| ndex :

return Natural i
XK :
NXxt :
Col :
X
Y
begi n
Next (The,
if Ck then
Nix t Hol ds(The. Sqrs(X,Y));
i f Nxt Enpty then
return O;
el se
Col := To_Col our(Nxt);
if Col = The. Qpponent then
return No_Turned(The, X, Y, Dir,
el sif Col = The. Pl ayer then
return N,
end if;
end if;
el se
return O;
end if;
end No_Tur ned;

X
Y

:O_
:O_

XY, Dr, &);

No_Tur ned(The: in Board; O X, O_

Y:in Board_I ndex;

s
--Result from next
--Next inline is
-- Count er col our
-- Local copy
-- Local copy

-- Next cell

--On the board
--Contents are
--End of line

- - Col our

-- Opponents counter
N+1); --Try next cell

-- End of counters

--Counters turned

--No |ine

O M A Smith - May not be reproduced without permission

142 Case study: Design of a game

The procedure Next returns the position of the next cell in the current direction. If there is no such cell
because the edge of the board has been reached, then Res is set to False.

procedure Next(The:in Board; X Co, Y_Co:in out Board_I|ndex;
Dir:in Natural; Res:out Boolean) is

X, Y . Natural ;
begi n

X := X Co; Y :=Y_Co; --May go outside Board_range

case Dir is
when 1 => Y: =Y+1; -- Direction to nopve
when 2 => X =X+1; Y:=Y+1; - - 8 1 2
when 3 => X =X+1; S
when 4 => X =X+1; Y:=Y-1; -- 7 & 3
when 5 => Y: =Y-1; - -
when 6 => X:=X-1; Y:.=Y-1; -- 6 5 4
when 7 => X =X-1; --
when 8 => X:=X-1; Y:=Y+1; --
when others => raise Constraint_Error;

end case;

if Xin Board Index and then Y i n Board_| ndex then
XC := X YC:= Y, --
Res := True; -- Found a next cell

el se
Res : = Fal se; --No next cell

end if;

end Next ;

The procedure Add adds a player’s move to the board. Naturally this must be a valid move which has
previously been validated with the function Check_Move. The type of move is recorded so that a draw can be
detected when both players have passed on their last move.

procedure Add(The:in out Board; X, Y:in |nteger;
Move_|s:in Mve_Status) is

Plays_Wth: Counter; --Current player's counter
Tur ned : Natural ; -- Nunber counters turned
begi n

Set(Plays_Wth, The.Pl ayer); --Set current col our

The. Last _Move(The.Player) := Mwve_|s; --Last nove is

if Mwve_|Is = & then -- Not Pass
Turn_Count ers(The, X, Y, Turned); --and flip
Add(The.Sgrs(X, Y), Plays Wth); --to board

The. Score(The. Pl ayer) :=
The. Score(The. Player) + Turned + 1;
The. Score(The. Opponent): =
The. Score(The. Qpponent) - Turned;
end if;
end Add;

O M A Smith - May not be reproduced without permission

Case study: Design of agame 143

The procedure Tur n_Count er s implements the turning of the opponents counters on the board. Naturally,
for thisto be called, the move made must be valid.

procedure Turn_Counters(The: in out Board; X Y: in Board_I ndex;
Total: out Natural) is

Num Cap : Natural := 0;
Captured : Natural;
begi n

if Holds(The.Sqrs(X, Y)) = Enpty then
for Dir in1 .. 8 loop
Captured := No_Turned(The, X, Y, Dr);
if Captured > 0 then
Capture(The, X, Y, Dr);
Num Cap := Num Cap + Captured,;

end if;
end | oop;
end if;
Total := Num Cap;

end Turn_Counters;

Therecursive procedure Capt ur e implements the physical capture of the opponent’s counters. The strategy
isto flip the opponent’ s counters in the current direction until a square containing the current player’s countersis
found.

procedure Capture(The:in out Board; X Co, Y_Co:in Board_I| ndex;
Dir:in Natural) is

(0% : Bool ean; --There is a next cell
X, Y : Board_I ndex; --Coordi nates of cell
Nxt : Cel | _Hol ds; --Next inlineis
begi n
X := X Co; Y :=Y Co;
Next(The, X, Y, Dr, Ok); --Cal cul ate pos next cell
if Gk then --Cel |l exists (Mst)

Nxt := Holds(The.Sgrs(X YY));
i f To_Colour(Nxt) = The. Qpponent then

Flip(The.Sgrs(X, Y)); --Capture
Capture(The, X, Y, Dr); --lmpl ement capture
el se
return; --End of |ine
end if;
el se
rai se Constraint_Error; --WIIl never occur
end if;
end Capture;

O M A Smith - May not be reproduced without permission

144 Case study: Design of a game

The procedure St at us returns the current state of the game. This may be adraw if both players have passed
ontheir last go.

function Status (The:in Board) return State_ O _Gane is
begi n
if The. Score(The.Qpponent) = 0 then
return Wn;
end if;
if (The.Sgrs'Length(1) * The. Sgrs' Length(2) =
The. Scor e(The. Opponent) +The. Scor e(The. Pl ayer)) or
(The. Last _Move(Bl ack) =Pass and The. Last _Move(Wi t e) =Pass)
t hen
i f The. Score(The. Opponent) = The. Scor e(The. Pl ayer)
then return Draw,
end if;
i f The. Score(The. Opponent) < The. Scor e(The. Pl ayer)
then return Wn;
el se
return Lose;
end if;
end if;
return Play;
end;

Whilst not used, the function Cont ent s is provided so that another user of the class Boar d could find the
contents of individual cells.

function Contents(The:in Board; X Y:in Integer)
return Cell_Holds is
begi n
return Holds(The.Sgrs(X, Y));
end Contents;

end d ass_Board;

The package Cl ass_Pl ayer is responsible for communicating with the actual human player playing the
game.

with C ass_Counter, C ass_Board;
use Cass_Counter, C ass_Board,;
package C ass_Pl ayer is

type Player is private;

procedure Set(The:in out Player; Cin Counter_Col our);
procedure Get_Myve(The:i n Player; Row, Col um:out Integer);
function M/_Counter(The:in Player) return Counter;
procedure Announce(The:in Player; What:in State_ O _Gane);

private
type Player is record
Plays Wth : Counter; --Player's counter
end record;

end d ass_Pl ayer;

O M A Smith - May not be reproduced without permission

Case study: Design of agame 145

In the implementation of the class Cl ass_Pl ayer the procedure Set sets the colour for the player's
counter.

wi th Ada. Text _l o, Ada.I|nteger_Text_Io;
use Ada.Text _|o, Ada.lnteger_Text |o;

package body C ass_Pl ayer is
procedure Set(The:in out Player; Cin Counter_Colour) is

A Counter : Counter;

begi n

Set(A Counter, C); --Set col our

The. Plays_ Wth := A Counter; --Player is playing with
end Set;

The procedure Get _Mbve communicates with the human player using a simple text based interaction.

procedure Get_Myve(The:in Player; Row, Col um:out Integer) is

Val i d_Move : Bool ean : = Fal se;
begi n
whil e not Valid_Mve | oop
begi n

Put (" Pl ease enter nove "); Display(The.Plays_Wth);
Put (" row colum : "); Get(Row); GCet(Columm);
Val i d_Move : = True;

exception
when Data_Error =>
Row := -1; Colum := -1; Skip_Line;

when End_Error =>
Row : = 0; Colum := O;
return;
end;
end | oop;
end Get _Move;

Note: A player can pass a turn by entering a coordinate of 0, 0.

The counter that the player plays with isreturned by the functionMy_Count er .

function My _Counter(The:in Player) return Counter is
begi n

return The. Plays _Wth;
end My_Counter;

O M A Smith - May not be reproduced without permission

146 Case study: Design of a game

The procedure Announce communicates with the human player the result of the game.

procedure Announce(The:in Player; Wuat:in State_ O _Gane) is
begi n
case Wiat is
when Wn =>
Put ("Player "); Display(The.Plays Wth);
Put (" has won");
when Lose =
Put ("Player "); Display(The.Plays Wth);
Put (" has lost");
when Draw =>
Put("It's a draw');
when ot hers =>
rai se Constraint_ Error;
end case;
New_Li ne;
end Announce;

end d ass_Pl ayer;

9.7 Sdf-assessment

) What is the function of the classPl ayer ?

° What is the function of the classCel | ?

) Could the recursive functionno_t ur ned in the classBoar d be written non-recursively?

) The procedure announce in the classBoar d hasacase statement withawhen ot her s clause

that can never occur. Why isthis clause necessary?

9.8 Exercises

° Better ‘reversi’
Modify the program to have a separate class for all input and output.

° Graphic ‘revers’
The program could be modified by providing additional classes to present agraphical display of the
board. The display could enable the user to drop a counter into a cell selected by a using a mouse.
Describe the modifications required to implement this new version.

° Implementation of a graphic ‘ Reversi’
Implement thisnew graphical version.

O M A Smith - May not be reproduced without permission

10 Inheritance

This chapter introduces the concept of inheritance in which an existing class can be specialized without
modifying the original class. By using this technique software re-use can become a practical consideration
when developing software. Thus a programmer can become a builder of software using previously
developed components.

10.1Introduction

Inheritance is the ability to create a new class by using the methods and instance attributes from an existing class
in the creation of anew class. For example, aclass Account that provides the methods deposi t, wi t hdr aw,
bal ance, andst at enent can be used as the base for anew class that provides the ability to pay interest on the
outstanding balance in the account. The new class | nt er est _Account inherits all the methods and instance
attributes from the classAccount and adds to these the new methods of Cal ¢_I nt erest, Add_I nt er est,
and Set _Rat e plustheinstance attribute Accunul at ed_I nt er est. Thisisillustrated in Figure 10.1.

Class Account Class|Interest_Account Actual components of
ClassInterest_Account
Account I nt erest _Account Interest_Account
Deposi t Add_|I nt er est Deposi't
- Withdraw
W't hdr aw
+ Cal c_l nterest L Balance OFf
Bal ance — Add_Interest
Set_Rate Calc_Interest
Bal ance_Of Set_Rate
Accumul at ed_| nt er est

Balance_Of
Accumullated Interest]

Figure 10.1 components of Account and thederived class| nt er est _account .

Note: Theclass| nt er est _Account hasthe same visibility of componentsin the base class Account as
would a client of the class. In particular, it has no access to the private instance attributes of the base
class. Thus methods in the class | nt erest Account cannot access the base class instance
attribute Bal ance_Of .

However, for a class type to be fully extended it must be declared ast agged. If aclass typeis nott agged
then it can only be extended by adding new methods. New instance attributes may not be added.

The consequence of this is that an implementor of a class must explicitly declare the class record type
t agged if new classes are to be derived from it.

O M A Smith - May not be reproduced without permission

148 Inheritance

10.2 Tagged types

A tagged record type declaration is very similar to an ordinary type declaration. For example, the
specification of aclassAccount shown in Section 6.3.4 can be amended to allow inheritance to take place. The
new specification for the classAccount isasfollows:

package C ass_Account is
type Account is tagged private;
subtype Money is Float;
subtype Proney is Float range 0.0 .. Float'Last;

procedure Deposit(The:in out Account; Anpunt:in Pnoney);
procedure Wthdraw(The:in out Account;
Anount :in Pnoney; GCet:out Proney);
function Balance(The:in Account) return Money;

private
type Account is tagged record
Bal ance_OF : Money := 0.00; --Amount on deposit
end record;

end C ass_Account;

Note: The only difference fromthe previous class specification for Account is the inclusion of the keyword
t agged.

The implementation of the class Cl ass_Account remains the same. This implementation is shown in
Section 6.3.6.

10.2.1 Terminology

Terminology Explanation
Base class/ Super class | A classfrom which other classes are derived from.
Derived class/ Sub class | A new classthat specializes an existing class

10.3Theclass| nt er est _account

From the classAccount can be derived a new type of account that paysinterest on the outstanding balance at the
end of each day. This new class will have the additional methods of:

M ethod Responsibility

Cal c_Interest Calculate at the end of the day the interest due on the

bal ance of the account. Thiswill be accumulated and
credited to the account at the end of the accounting period.

Add_I nt er est Credit the account with the accumul ated interest for the
accounting period.
Set _Rate Set theinterest rate for all instances of the class.

The method Set _Rat e is special asit has the responsibility of setting the interest rate for all instances of the
class. This is implemented by setting the shared class attribute t he_I nt er est _Rat e. When a variable is
declared outside the class record type there is only a single instance of the attribute and this single class attribute is
shared between, and visible to all instances of the class. However, it is not visible outside the class asiit is declared
within the private part of the package specification. Thisisillustrated in Figure 10.2

O M A Smith - May not be reproduced without permission

Inheritance 149

Two instances of the class| nt er est _Account sharing the same class attribute
the_interest _rate.

/Deposi t I rDeposi t N\
W t hdr aw W t hdr aw
Bal ance Bal ance
Add_I nt er est Add_I nt er est
Cal c_I nterest Cal c_I nterest
Set _Rate Set _Rate
bal ance_of bal ance_of

Accunul at ed_I nt er est f }Accurml ated_I nt erest
The_Interest_Rate]

Figure 10.2 lllustration of aclassglobal variable.

The Ada specification for the inherited classCl ass_| nt er est _Account is:

with C ass_Account;
use C ass_Account;
package C ass_Ilnterest_Account is

type Interest_Account is new Account with private;

procedure Set Rate(Rate:in Float);

procedure Calc_Interest(The:in out Interest_Account);

procedure Add_Interest(The:in out Interest_Account);
private

Dai ly_Interest_Rate: constant Float := 0.00026116; --10%

type Interest_Account is new Account with record

Accunul ated_Interest : Mney := 0.00; --To date
end record;
The_Interest_Rate : Float := Daily_Interest_Rate;

end O ass_Interest _Account;

Note: The declaration of the class | nt er est _Account is defined as an extension to the existing class
Account . The specification for the additional procedures are defined in the public part of the
specification.

The class attribute The_I nt er est _Rat e is shared amongst all the instances of the class
I nt erest _Account .
Astheprocedureset _r at e only accesses class attributes, an instance of the classis not required as
a parameter. Thistype of method isreferred to as a class method.

Theclassl nt er est _account contains:

® The following methods:

Defined in Cl ass_Account Defined in Class interest_account
Deposi t Cal c_I nterest

Wt hdr aw Add_I nt er est

Bal ance Set _Rate

St at ement

® Thefollowing instance and class attributes:

Defined in Cl ass_Account Defined in Class interest_account
Bal ance_Of Accunul at ed_I nt er est
The_Interest_Rate

Note: Onlyaccumnul at ed_i nt erest andThe_I nt er est _Rat e may be accessed by methods defined
intheclassl nt er est _Account .

O M A Smith - May not be reproduced without permission

150 Inheritance

The implementation of theclassCl ass_| nt erest _Account is:

package body C ass_Interest Account is

procedure Set _Rate(Rate:in Float) is

begi n
The_Interest _Rate : = Rate;
end Set_Rate;
procedure Calc_Interest(The:in out Interest_Account) is
begi n
The. Accurul ated I nterest := The. Accurul ated_Interest +

Bal ance(The) * The_lnterest_Rate;
end Cal c_l nterest;

procedure Add_Interest(The:in out Interest_Account) is

begi n
Deposit (The, The. Accumul ated_I nterest);
The. Accunul ated_Interest := 0.00;

end Add_I nterest;

end C ass_Interest_Account;

The procedure St at ement will print a mini-statement for an Account

with Ada. Text | o, Ada.Float_Text _lo, Cass_Account;
use Ada.Text_lo, Ada.Float_Text _|o, C ass_Account;
procedure Statement(An_Account:in Account) is
begi n
Put ("M ni statenent: The anpunt on deposit is £");
Put (Bal ance(An_Account), Aft=>2, Exp=>0);
New_Li ne(2);
end Statenent;

O M A Smith - May not be reproduced without permission

Inheritance 151

The two classes Account and | nt er est _Account can be used in a program to perform some simple bank
transactions. A program to illustrate the use of the new class | nt er est _Account and the original class
Account isshown below:

wi th Ada. Text i o,

Cl ass_Interest_Account, C ass_Account, Statenent;
use Ada. Text _i o,

Cl ass_| nterest_Account, Cl ass_Account;
procedure Main is

M ke : Account ; --Nor mal Account
Corinna :Interest_Account; --Interest bering account
bt ai ned: Money;
begi n
Set _Rate(0.00026116); --For all instances of

--interest bering accounts
Statenent (M ke);

Put ("Deposit £50.00 into M ke's account"); New_Li ne;
Deposit(M ke, 50.00);
Statenment(Mke);

Put ("Wt hdraw £80. 00 from M ke's account”); New Li ne;
Wthdrawm(M ke, 80.00, Cbtained);
Statement(Mke);

Put (" Deposit £500.00 into Corinna's account"); New_Line;
Deposit(Corinna, 500.00);
St at enent (Account (Corinna));

Put ("Add interest to Corinna's account"); New_Line;
Calc_Interest(Corinna);
Add_Interest(Corinna);

St at enent (Account (Cori nna));
end Mai n;

In this program, the procedure St at enment takes as its parameter an instance of an Account . However, as
the account for Cor i nna isaninstance of al nt er est _Account it must first be converted to an instance of an
Account before it can be passed as an actual parameter to St at enent . This is accomplished with a view
conversion Account (Cori nna) . The actual parameter passed to St at enent is now viewed as if it were an
Account .

which, when compiled and run, would produce the following output:

M ni statenent: The ampbunt on deposit is £ 0.00

Deposit £50.00 into M ke's account
M ni statenent: The anpbunt on deposit is £50.00

Wt hdraw £80.00 from M ke's account
M ni statenment: The anpunt on deposit is £50.00

Deposit £500.00 into Corinna's account
M ni statenment: The amount on deposit is £500.00

Add interest to Corinna's account
M ni statenment: The amount on deposit is £500.13

O M A Smith - May not be reproduced without permission

152 Inheritance
10.3.1 Terminology

The following terminology is used to describe the shared components of aclass.

Terminology | Example: Explanation
in classInterest_account
Class attribute | The_I nterest _Rate | A variable which is shared between
all members of the class.
Classmethod | Set _Rat e A procedure or function used to
access only class attributes.

10.4Visibility rules (Normal inheritance)

The derived class can only access public methods of the base class. As instance attributes are declared in the
private part of the base class they are not accessible to the derived class. For example, the class
I nt erest _Account can access the methods Deposi t, Wt hdr aw, and Bal ance but cannot access the
instance attribute Bal ance_Of . The visibility of itemsin the base class and derived classisillustrated in Figure
10.3.

Key Base class visibility Derived classvisibility

Visible to class and
client.

Visible to this class
only

Not visible to class or / Not visible \

client

Visible to class Visible to class

Not visible \

Figure 10.3 Visihility of componentsin base and derived classes.

10.5Converting aderived classto a base class

A derived class may be converted to its base class, the effect of which is to remove the instance attributes added
by the derived class. For example, in the following program Cor i nna’sinterest bearing account is converted to a
normal account. However, a base class cannot be converted directly to aderived class.

with C ass_Interest_ Account, Cl ass_Account, Statenent;
use Cass_Interest_Account, C ass_Account;
procedure Main is
Corinna : Interest_ Account;
New_Acc : Account;
begi n
Deposit(Corinna, 100.00);
New_Acc : = Account (Corinna); --derived -> base conversion
St at enent (Account (Corinna)); --Interest_account
St at ement (New_Acc); --Account
end Mai n;
Note: The effect of a conversion from a derived class to a base class is to remove the additional components

that have been defined in the derived class.

O M A Smith - May not be reproduced without permission

Inheritance 153

which when run, would give the following results:

M ni statenment: The amount on deposit is £100.00

M ni statement: The amount on deposit is £100.00

10.6 Abstract class

If aclassisto be used purely as a specification of the facilities that are to be provided by later derived classes,
then it can be made abstract. An abstract class therefore has no implementation part. For example, an abstract
specification of abank account is asfollows:

package C ass_Abstract_Account is

type Abstract _Account is abstract tagged null record;
subtype Money is Float;
subtype Pnoney is Float range 0.0 .. Float'Last;

procedure Deposit (The:in out Abstract_Account;
Anount:in Proney) is abstract;

procedure Wthdraw (The:in out Abstract_Account;
Anount : i n Pnoney;
Cet:out Pnoney) is abstract;

function Balance (The:in Abstract_Account)
return Money is abstract;

end C ass_Abstract _Account;

Note: An elaboration of an abstract class can never be made.

The keywordabst r act isused to indicate:
° That the type is abstract, and hence no actual definition will be provided.

° That the methods (functions or procedures) are abstract and consequently there will be no
implementation part.
Note: AsthetypeAbstract account containsno instance attributesit has been left public. It could have

been defined as:

type Abstract _account is abstract tagged private;
with the private part of the specification containing:

type Abstract_account i s abstract tagged null record;

The component ‘nul | recor d'isshorthand for :
‘record null end record’

O M A Smith - May not be reproduced without permission

154 Inheritance

The abstract class can then be used to derived specific types of bank account. In the following case it has been
used to derive a simple bank account.

with Cl ass_Abstract_Account;
use C ass_Abstract_Account;
package C ass_Account is

type Account is new Abstract_Account with private;

subtype Money is C ass_Abstract_Account. Mney;

subtype Proney is Cl ass_Abstract _Account. Pnoney;

procedure Deposit (The:in out Account; Anpunt:in Prmoney);

procedure Wthdraw (The:in out Account; Anmount:in Proney;
Cet :out Pnoney);

function Balance (The:in Account) return Money;

private
type Account is new Abstract_Account with record
Bal ance_Of : Money := 0.00; --Anpunt i n account
end record;

end C ass_Account;

Note: Subtype has been used to make the subtypes Money and PMoney visible to clients of the class. If this
had not been done, users of the class would in most cases have to wi t h and use the package
Cl ass_abstract _account.

The implementation of which would be the same as the classAccount shownin Section 6.3.5.

Once aclass has been derived from an existing class it too may be used as a base class in deriving a new class.
For example, an account that allows a customer to only make three withdrawals in a week can be derived from
Cl ass_Account asfollows:

with C ass_Account;
use C ass_Account;
package d ass_Account Ltd is

type Account_Ltd is new Account with private;
procedure Wthdraw (The:in out Account_Ltd;

Anmount : i n Pnoney; Get:out Proney);
procedure Reset(The:in out Account_Ltd);

private
Wthdrawal s_In_A Week : Natural := 3;
type Account_Ltd is new Account with record
Wthdrawal s : Natural := Wthdrawal s I n_A Wek;
end record;

end Cl ass_Account Ltd;

Note: The derived class overloads the method W t hdr aw with a new specialized meaning. The method
Reset isused to set the number of withdrawals that may be made in the current week to three.

Theimplementation for the classis asfollows:

package body C ass_Account_Ltd is

O M A Smith - May not be reproduced without permission

Inheritance 155

The specialization of the procedure W t hdr aw calls the methodwi t hdr awin classAccount to processthe
withdrawal. To avoid infinite recursion, the parameter The isconverted to type Account beforeit is passed as a
parameter toW t hdr aw. Thisistermed a view conversion. Overload resolution is then used to determine which
version of W t hdr awto call.

procedure Wthdraw (The:in out Account_Ltd;
Anpunt :in Pnoney; Get:out Pnoney) is

begi n
if The.Wthdrawals > 0 then --Not limt
The. Wthdrawal s : = The. Wthdrawal s - 1;
Wt hdraw(Account(The), Anpunt, Get); --In Account
el se
CGet := 0.00; --Sorry
end if;

end Wt hdraw,

The functionr eset resets the number of withdrawals that may be made in the current week.

procedure Reset(The:in out Account_Ltd) is
begi n

The. Wthdrawal s : = Wthdrawal s_I n_A \Wek;
end Reset;

end C ass_Account _Ltd;

10.6.1 Putting it all together

A program to illustrate the use of the classCl ass_Account _| t d isshown below:

with C ass_Account, O ass_Account |t
use (O ass_Account, Cass_ Account |t
procedure Main is
M ke : Account_Ltd;
bt ai n: Money;
begi n
Deposit(M ke, 300.00); --In credit
St at ement (Account (M ke));
Wthdrawm(M ke, 100.00, Obtain); --Wthdraw sonme noney
Wthdrawm{ M ke, 10.00, Obtain); --Wthdraw sone noney
Wthdram{ M ke, 10.00, Qotain); --Wthdraw sone noney
Wthdrawm{ M ke, 20.00, Obtain); --Wthdraw sone noney

St at enent (Account (M ke));
end Main;

d, Statenent;
d,

Note: Thewi t h and use of the package Cl ass_Account so that the subtype Money isdirectly visible.
The procedure St at enent seen earlier is used to print a mini statement.

which when run, produces the following output:

M ni statement: The amount on deposit is £300.00

M ni statement: The amount on deposit is £180.00

Note: The final withdrawal of £20 is not processed as three withdrawal s have already been made this week.

O M A Smith - May not be reproduced without permission

156 Inheritance

10.6.2 Vigbility of base class methods

It isof course possibleto call the base class methodwi t hdr awdirectly using:

W thdraw(Account(Mke), 20.00, Qotain); --Cheat

as the Class Account is visible. This could have been prevented by not wi t h’ing and use’ing the package
Cl ass_Account . This had been done to make the subtype Money directly visible. Remember Money is
defined in the class Account (it has not been made visible to class Account _Lt d) so that both classes
Account andAccount Ltdcanbew t h’ed anduse’ed inthe same unit.

To avoid the possibility of the accidental use of wi t hdr aw in the base class the above program could have

been written as:

with C ass_Account, C ass_Account_Ltd, Statenent;

use C ass_Account;

procedure Main is
M ke : Account_Ltd;
bt ai n: O ass_Account . Money;

begi n
Deposit(M ke, 300.00); --In credit
St at ement (Account (M ke));
Wthdram{ M ke, 100.00, Cbtain); --Wthdraw some noney
Wthdrawm{ M ke, 10.00, Obtain); --Wthdraw sone noney
Wthdram{ M ke, 10.00, Obtain); --Wthdraw sone noney
Wthdrawm{ M ke, 20.00, Obtain); --Wthdraw sone noney
St at ement (Account (M ke));

end Main;

Note: The package Cl ass_Account has been used explicitly to access the subtype Money.

10.7 Multiple inheritance

Multiple inheritance is the ability to create a new class by inheriting from two or more base classes. For example,
the class Naned_Account , a named bank account, can be created from the class Account and the class
Name_Addr ess. TheclassAccount isdescribed in Section 6.3.4 and the class Nane__Addr ess is described
in Section 8.10 The inheritance diagram for the classNamed_Account isillustrated in Figure 10.4.

Nanmed_Account

AN

Account Name_Addr ess

Figure 10.4 Inheritance diagram for anamed bank account.

The responsibilities of the class Named_Account are al those of the classes Account and
Name_Addr ess plus the additional responsibility to print the person's name with their printed statement. The
new responsibility of printing a statement with the account holder's name overrides the responsibility of printing a
statement in Account . The methods in the three classes are:

In Class Named Account | In Class Account In Class Name Address
Deposi t Set
W t hdr aw Print_Name
Bal ance Print _Address

O M A Smith - May not be reproduced without permission

Inheritance 157

Note: The methods of the class Naned_Account will be all the methods of an Account plus all the
methods of Nane_Addr ess plus any methods of Named_Account itself.

Unfortunately multiple inheritance is not directly supported in Ada 95. However, an easy work around is to
define the class Named_Account whose instance attributes are instances of the classes Account and
Name_Addr ess. The public methods of the class Naned_Account have the same specification as the
combined methods of Account and Named_Account except that the type of object operated on is an instance
of the classNamed_Account .

The specification for the classNamed_Account isshown below:

with C ass_Account, C ass_Nanme_ Address;
use O ass_Account, C ass_Nane_ Address;
package C ass_Named_Account is

type Named_Account is tagged private;
subtype Pnoney is O ass_Account. Pnoney;
subtype Money is C ass_Account. Money;

procedure Set(The: out Named_Account; Str:in String);
function Deliver_Line(The:in Naned_Account;

Line:in Positive) return String;
function Lines(The:in Naned_Account) return Positive;
procedure Deposit(The:in out Named_Account; Anount:in Pnoney);
procedure Wthdraw(The:in out Named_Account; Anount:in Proney;

Cet: out Pnoney);
function Balance(The:i n Named_Account) return Proney;

private
type Named_Account is tagged record
Acc : Account; -- An account obj ect
Naa : Nane_Address; -- A Nane and address object
end record;

end Cl ass_Naned_ Account;

Note: To allow a client of the class Naned_Account to directly use the subtype Money in the class
Account thedeclaration:
subt ype Money is C ass_Account. Money;
has been added to the class.

The implementation of the classNamed_Account issplitinto three distinct parts:

) The implementation of the methodsinNarme_ Addr ess.
) The implementation of the methodsin Account .
) The implementation of the methods of Named_Account itself.

The implementation of the methods in Named_Account which are inherited from Name_Addr ess are as
follows:

O M A Smith - May not be reproduced without permission

158 Inheritance

with Ada. Text o, Ada.Float_ Text |o;
use Ada. Text_lo, Ada.Fl oat_Text _Io;
package body C ass_Naned_Account is

procedure Set(The: out Named_Account; Str:in String) is
begi n

Set (The. Naa, Str);
end Set ;

function Deliver_Line(The:in Naned_Account;
Line:in Positive) return String is
begi n
return Deliver_Line(The.Naa, Line);
end Deliver_Line;

function Lines(The:in Nanmed_Account) return Positive is
begi n

return Lines(The.Naa);
end Lines;

The implementation of the methodsin Named_Account which areinherited from Account areasfollows:

procedure Deposit(The:in out Named_Account; Anopunt:in Proney) is
begi n
Deposit(The. Acc, Anpunt);
end Deposit;

procedure Wthdraw(The:in out Named_Account; Anount:in Pnoney;
Get: out Pnoney) is
begi n
Wt hdraw(The. Acc, Anpunt, Get);
end Wt hdraw,

function Balance (The:in Named_Account) return Prmoney i s
begi n
return Bal ance(The. Acc);
end Bal ance;
end Cl ass_Naned_ Account;

A procedure St at ermrent to print amini statement of the state of an instance of a Named_Account is defined
asfollows:

with Ada. Text | o, Ada. Float_Text_lo, C ass_Nanmed_Account;
use Ada. Text_lo, Ada.Float_Text_Ilo, C ass_Nanmed_Account;
procedure Statement(An_Account:in Naned_Account) is
begi n
Put("Statement for : "); Put(Deliver_Line(An_Account, 1)); New_Line;
Put ("M ni statement: The anpunt on deposit is £");
Put (Bal ance(An_Account), Aft=>2, Exp=>0);
New_Li ne(2);
end St at enent;

Note: Again by not permiting an input or output operations to be part of the class, the scope for its potential
re-useisincreased.

O M A Smith - May not be reproduced without permission

Inheritance 159
10.7.1 Putting it all together

A program to illustrate the use of the classNanmed_Account isshown below:

with d ass_Naned_Account, Statenent;
use O ass_Naned_Account;
procedure Main is
M ke : Nanmed_Account;
Get : Money;
begi n
Set (Mke, "A N. O her/Brighton/ UK");
Deposit (M ke, 10.00);
Statement (M ke);
Wthdraw (M ke, 5.00, Get);
Statement(Mke);
end Mai n;

which when run, produces the following output:

Statement for : A N Qther
M ni statenent: The anpbunt on deposit is £10.00

Statement for : A N Qther
M ni statenent: The ampbunt on deposit is £ 5.00

10.8 I nitialization and finalization

When an instance of a class is created, there can be static initialization of the instance or class attributes in the
object. For example, in the class Account in Section 6.3.4 the initial amount in the account was set to £0.00
when an instance of the class was elaborated. However, this initialization is limited to a simple assignment. In
some cases a more complex initialization is required.

Consider the case of a bank account that records an audit trail of all transactions made on the account. The
audit trail consists of a record written to disk for each transaction made on the account. The audit trail file
descriptor is shared between all instances of the class and isinitialized by the first elaboration of an instance of the
class. Thefile descriptor is closed when the last instance of the classisfinalized.

By inheriting from the package Ada. Fi nal i zati on user defined initialization and finalization can be
defined for aclass. This takes the form of two user defined procedures| ni ti al i ze and Fi nal i ze which are
called respectively when an instance of the class is elaborated and when an instance of the class is destroyed. For
exampl e, the point when initialization and finalization take place is annotated on the following fragment of code.

procedure Ex5 is

M ke : Account _At; --lnitialization on nike
begi n
Deposit(M ke, 100.00);
decl are
Corinna : Account _At; --lnitialization on corinna
begin

Deposi t (Corinna, 100.00);
--Finalization on corinna
end;
--Finalization on m ke
end EXx5;

O M A Smith - May not be reproduced without permission

160 Inheritance

The responsibilities for the ClassAccount _At that provides an audit trail are asfollows:

M ethod Responsibility

W t hdr aw Withdraw money from the account and write an audit trail
record.

Deposi t Deposit money into the account and write an audit trail record.

Bal ance Return the amount in the account and write an audit trail
record.

Initialize If this is the only active instance of the class Account then
open the audit trail file.

Finalization |If thisisthe last active instance of the class Account then
close the audit trail file.

The specification for the classAccount _At that creates an audit trail of al transactionsis:

with Ada. Text _lo, Ada.Finalization;
use Ada. Finalization;
package Cl ass_Account_At is

type Account At is new Limted_Controlled with private;
subtype Money is Float;
subtype Proney is Float range 0.0 .. Float'Last;

procedure Initialize(The:in out Account_At);
procedure Finalize (The:in out Account_ At);

procedure Deposit(The:in out Account_ At; Anmount:in Pnoney);
procedure Wthdraw(The:in out Account_At;
Anount : in Pnoney; GCet:out Proney);
function Balance(The: Account_At) return Money;
private

type Account_At is new Limted_Controlled with record

Bal ance_ O : Money .= 0.00; -- Anmpunt on deposit
Nunber : Natural := 0;
end record;
The_Audit_Trail: Ada.Text lo.File_Type; --File handle
The_Active : Natural := 0; --No of accounts

end C ass_Account At;

Note: Account _At isinherited from Li mit ed_Control | ed that is defined as a limited type. Thus
assignments of instances of Account _At are not allowed.

The variables The_Audit _Trai |l and The_Acti ve are shared amongst all instances of the class. These
variables contain respectively the open file descriptor and the number of active instances of the class.

In a program using the class Class_Account_At, the number of active instances of the class are required so
that thefile descriptor The_Audi t _Tr ai | may be initialized when the first instance of the class is elaborated
and closed when the last active instance of the class goes out of scope.

O M A Smith - May not be reproduced without permission

Inheritance 161

10.8.1 Implementation

The procedure | niti al i ze is called whenever an instance of Account _At is elaborated. This procedure
checksif thisisthefirst elaboration, determined by the reference count The_Act i ve. If it is the first concurrent
elaboration then the audit trail file | og. t xt is opened in append mode and associated with the file descriptor
The_Audit_Trail.

with Ada. Text _l o, Ada.lnteger_Text _|o, Ada.Fl oat_Text_Io;
use Ada.Text_lo, Ada.Integer_Text_lo, Ada.Float_Text_Io;
package body C ass_Account At is

procedure Initialize(The:in out Account_ At) is
begi n

The Active := The Active + 1; - - Anot her obj ect

if The_Active = 1 then -- first tinme for class

Open(Fil e=>The_Audit_Trail,
Mbde=>Append_Fi |l e, Nane=>"|og.txt");

end if;

end Initialize;

The procedure Finalize is called when the elaborated storage for an instance of Account _At goes out of
scope. The reference count of the number of active instantiations of Account _At is checked and when the last
concurrent instance goes out of scope thefile descriptor The_Audi t _Trai | isclosed.

procedure Finalize(The:in out Account_ At) is

begi n
if The_Active = 1 then Cl ose(The_Audit_Trail); end if;
The_ Active: =The_Active-1;

end Finalize;

The rest of the implementation follows very closely the previous implementation of the class Account with the
additional functionality of writing the audit trail record for each transaction performed.

procedure Deposit(The:in out Account_ At; Amount:in Pnoney) is

begi n

The. Bal ance_Of : = The. Bal ance_COf + Anount;

Audit_Trail (The, " Deposit : Ampunt =", Amount);
end Deposit;

procedure Wthdraw(The:in out Account_At;
Anount:in Pnoney; Get:out Proney) is
begi n
i f The.Bal ance_Of >= Anpunt then
The. Bal ance_Of : = The. Bal ance_ O - Anount;
Get := Amount;

el se
Get := 0.00;
end if;
Audit_Trail(The, " Wthdraw : Amount =", Get);

end Wt hdraw,

function Balance(The:in Account_At) return Money is

begi n
Audit_Trail (The, " Bal ance . Balance = ", The.Bal ance_ O);
return The. Bal ance_Of;

end Bal ance;

end d ass_Account _At;

O M A Smith - May not be reproduced without permission

162 Inheritance

10.8.2 Putting it all together

The following short test program demonstrates the working of the classAccount _At .

with Cl ass_Account At, Statenent;

use C ass_Account At;

procedure Main is
Bank : array (1 .. 10) of Account_At;
bt ai n: Money;

begi n
Deposi t (Bank(1), 100.00); - - Deposit 100. 00
Wt hdram Bank(1), 80.00, Qobtain);--Wthdraw 80.00
Deposi t(Bank(2), 200.00); --Deposit 200.00
end Mai n;
Note: The procedure | ni ti al i ze will be called ten times when the object Bank is elaborated, once for

each element of the array. Likewise when the object Bank is finalized, the procedure Fi nal i ze will
be called ten times, once for each element of the array.

This when compiled and run will generate the file | og. t xt which contains the audit trail of all transactions
made. The contents of the audit trail file areillustrated below:

Deposi t : 100. 00

Wthdraw : 80.00

Deposi t . 200. 00
10.8.3 Warning

There are two base types in Ada. Fi nal i zat i on from which user defined initialization and finalization is
facilitated. TheseareControl | ed andLi mi t ed_Cont r ol | ed the properties of which are:

Typein Ada.Finalization Properties

Controll ed Allow user defined initialization and
finalization for inheriting types. Instances of
these types may be assigned.

Limted Controlled Allow user defined initialization and
finalization for inheriting types. Instances of
these types may not be assigned.

When the base type for aclassis Cont r ol | ed then as part of an assignment operation Fi nal i zati on is
called on the target of the assignment. This will result in Fi nal i zati on being caled at least twice on an
object. The procedure Fi nal i zat i on iscalled once when an object is assigned too and once when its storageis
de-alocated. Thusif you use Cont r ol | ed asthe base type, the code for Fi nal i zati on must allow for such
an eventuality. The code for Fi nal i zati on in the class Account _At cannot be called twice. The exact
details of how to use Cont r ol | ed are explained in Chapter 17.

O M A Smith - May not be reproduced without permission

Inheritance 163

10.9 Hiding the base class methods

The base class methods may be hidden in a class by defining the inheritance only in the private part of the
specification. For example, arestricted type of account that only allows a statement to be printed and money to be
deposited into the account can be created.

For this type of account we wish to prevent the user from calling base class methods. Remember that normally
with inheritance the base class members are visible. Even if a base class method is overloaded in the derived class
it can still be called.

The specification of theclassRest ri ct ed_Account is:

with Cl ass_Account;
use C ass_Account;
package C ass_Restricted_Account is

type Restricted_Account is private;
subtype Money is C ass_Account. Money;
subtype Proney is C ass_Account. Pnoney;

procedure Deposit(The:in out Restricted_Account;
Anount:in Pnoney);
private
type Restricted_Account is new Account with record
nul | ;
end record;
end O ass_Restricted Account;

Note: The use of subtype to make the types fromclass Account visible.

The implementation of the classis:

package body C ass_Restricted_Account is

procedure Deposit(The:in out Restricted_Account;
Amount:in Pnoney) is
begi n
Deposi t (Account (The), Amount);
end Deposit;

end Cl ass_Restricted Account;

Here the base class methods are called from within the body of the derived class methods. Remember the body
of the package can see the methods of the base class.

O M A Smith - May not be reproduced without permission

164 Inheritance
10.9.1 Visibility rules (Hidden base class)

Thevisibility of itemsin the base class and derived classisillustrated in Figure 10.5.

Key Base classvisibility Derived classvisibility

Visible to class and
client.

Visible to this class
only

Not visible to class or / Not visible \

client

Not visible \

Figure 10.5 Visibility of componentsin base and derived classes.

The consequence of thisis that any methods from the base class that a client of the derived class may wish to
use have to be explicitly made available by providing an appropriate procedure or function in the derived class.

10.9.2 Putting it all together

The program below illustrates the use of this restricted account.

with Statemnent;
procedure Main is
Corinna :Restricted _Account; --Can only deposit
Begi n
Statement (Corinna);
Deposit(Corinna, 50.00);
Statenment(Corinna);
end Ex1;

which when compiled with a suitable definition for the procedure St at enent would produce output of the
form::

M ni statenent: The ampbunt on deposit is £ 0.00

M ni statenent: The anpbunt on deposit is £50.00

10.10 Sdf-assessment

) How can the use of inheritance save time in the production of software?

) Can any previously defined class be used as a base class from which other classes are derived?
) Can aderived class see the private data attributes of the base class? Explain why thisis so.

) What is the purpose of the pre-defined package Ada. Fi nal i zat i on?

O M A Smith - May not be reproduced without permission

Inheritance 165

) For an object o which is an instance of a derived class, how does a programmer call the method min
the base class which has been overloaded by another method min the derived class?

) Why can the code of Fi nal i zat i on intheclassAccount _At not be called twice?

10.11 Exercises

Construct the following:

° Enpl oyee_Pay
A classEnpl oyee_Pay which represents a person’s salary has the following methods:

Met hod Responsibility
Set _hourly_rate Set the hourly rate.
Add_hour s_wor ked | Accumulate the number of hours worked so far.

Pay Deliver the pay for thisweek.

Reset Reset the hours worked back to zero.

Hour s_Wor ked Deliver the number of hours worked so far this
week.

Pay rate Deliver the hourly pay rate.

Tax isto be deducted at 20% of total pay.

° Test
A program to test the classEnpl oyee_Pay.

) Bett er _Enpl oyee_Pay
A classBet t er _Enpl oyee_Pay which represents a person’s salary. This extends the class
Enpl oyee_Pay to add the additional methods of:

Met hod Responsibility

Set _Overtinme_Pay | Settheovertime pay rate.

Nor mal _Pay_Hours | Setthe number of hoursin aweek that have to be
worked before the overtime pay rate is applied.
Pay Deliver the pay for thisweek. Thiswill consist of
the hours worked at the normal pay rate plusthe
hours worked at the overtime rate.

° Test
A program to test the classBet t er _enpl oyee_pay.

° Enpl oyee_Pay Wt h_Repaynent .
A classEnpl oyee_Pay_ Wt h_Repaynent which represents aperson’s salary after the deduction
of the weekly repayment of part of aloan for travel expenses. This extends the class
Bet t er _enpl oyee_pay to add the additional methods of:

Met hod Responsibility
Set _Deducti on Set the weekly deduction
Pay Deliver the pay for thisweek. Thiswill include

the deduction of the money for the employee
loan if possible.

Remember to include the possibility of an employee not being able to repay the weekly repayment of
their loan as they have not worked enough hours.

° t est
A program to test the classEnpl oyee_Pay Wt h_Repaynent.

O M A Smith - May not be reproduced without permission

11 Child libraries

This chapter introduces child libraries. A child library is a way of adding to an existing package without
changing the original package. In addition, a child of an existing package is allowed to access the private
components of the parent. By using child libraries a large package or class can be split into manageable
components.

11.1 Introduction

In developing software, extensions to an existing class are occasionally required which modify or access the
private instance attributes. This is not possible with inheritance as an inheriting class is not allowed to access
private instance attributes of the base class. Rather than change the code of the class directly, achild library of the
class can be created which is a separate entity that is allowed to access private components of a package.

The original class is not re-compiled, and thus does not need re-testing. However, the combined parent and
child library needs to be tested as the child library can modify private instance or class attributes of the parent.

This is similar in effect to inheritance, in that new methods are added to an existing class. The class type
however, may not be extended. For example, the class | nt er est _account (in Section 10.3) can have an
additional methodi nspect _i nt er est added which will alow inspection of the accumulating interest that is
to be added to the account at the end of the accounting period. This is implemented as a child package whose
specification isasfollows:

package C ass_Interest_ Account.|nspect_Interest is
function Interest _|Is(The:in Interest_Account)
return Money;
end C ass_Interest_Account.|nspect_Interest;

The child package name is defined as two components, the original package name followed by the name of the
child package. In this case the two componentsare Cl ass_|I nt erest _Account. I nspect I nterest.
The implementation of theseis asfollows:

package body C ass_lnterest_Account.|nspect_Interest is

function Interest_Is(The:in Interest_Account)
return Money is
begi n
return The. Accurul at ed I nterest;
end I nterest _Is;

end C ass_| nterest_Account.|nspect _|nterest;

Note: You can access private components of the parent package.

This specialization of an interest bearing account could not be created by inheriting from the class
I nterest _account as accunul ated_interest is a private instance attribute of the class
I nt er est _account . Accessto this variable breaks the encapsulation of the classl nt er est _account .

Theintent isfor child packages to allow the specialization of an existing package without having to change the
parent. In particular, the parent will not need re-testing but the combined parent and child must be tested as the
child package may affect the working of the parent.

O M A Smith - May not be reproduced without permission

Exceptions 167
11.1.1 Putting it all together

Thepackagel nt er est _account anditschildi nspect _i nt er est areused asfollows:

with Ada. Text | o, Ada.Float_Text _lo, Cass_Account,
Class_l nterest_Account, O ass_|nterest_Account.|nspect_Interest,
St at enent ;
use Ada.Text |o, Ada.Float Text lo, Cass_Account,
Class_Interest_Account, Cass_|nterest_Account.|nspect_Interest;
procedure Main is
My_Account: Interest_Account,;
Obt ai ned : Money;
begi n
St at enent (My_Account);
Put (" Deposit 100.00 into account"); New_Li ne;

Deposi t (My_Account, 100.00); --Day 1

Cal c_Interest(My_Account); --End of day 1

Cal c_Interest(My_Account); --End of day 2

St at enent (My_Account); --Day 3

otained := Interest_Is(My_Account); - - How nuch i nt erest

Put ("I nterest accrued so far : £");
Put (Obtained, Aft=>2, Exp=>0); New Li ne;
end Main;

Note: When a child isincluded, its ancestors are automatically wi t h’ed.
When run it will produce the following output:

M ni statenent: The ampbunt on deposit is £ 0.00

Deposit 100. 00 i nto account
M ni statenent: The amount on deposit is £100.00

Interest accrued so far : £ 0.05

11.1.2 Warning

A child package breaks the encapsulation rules of a package. In particular a child package can access the private
data components of its parent package. In accessing the private instance attributes of a class, the child package
may compromise the integrity of the parent package.

O M A Smith - May not be reproduced without permission

168 Child libraries
11.2Visbility rules of a child package

The private part of a child package can access all components of its ancestors, even the private components.
However, the visible part of a child package has no access to the private components of its ancestors. Thisis to
prevent possible renaming allowing a client direct access to the private components of one of the child’s
ancestors.

A child package allows a programmer the ability to extend an existing package without the need to change or
re-compile the package.

For example, Figure 11.1 illustrates a hierarchy of package specifications rooted at package P. The ancestor of
packages P. C2 and P. C1 is package P, whilst the ancestors of package P. C2. Gl are the packagesP. C2 and P.

T

Parent —» —
Visible Spec.
Private Spec.
_ Body j
P.C1 (P.C2 \
Child —» [VisibIeSpec.\ Viabie S | ~+—Child
Private Spec. Private Spec.
\ Body J \ Body)
((P.C2.61)
Grand child —p» Visible Spec,
Private Spec.

\ Body)

Figure11.1 Illustration of the hierarchy of child units.

Key Package specification Package body
Components | package P is
of a package -- Visible specification. |package body Pis
in this case|private -- Body of package
package P. -- Private specification. [end P;
end P;
Can accessin->| P P.Cl P. C2 P.C2. Gl

P. Cl Visiblespec. Visiblespec. | Visiblespec.
Visible specification ° when when

wi th'ed W th'ed
P. Cl Visiblespec. Visiblespec. [Visiblespec.
Private specification | Private spec. ° when when

wi th'ed W thed
P. C2. Gl Visiblespec. | Visiblespec. | Visiblespec.
Visible specification when °

w th'ed
P.C2. Gl Visiblespec. | Visiblespec. | Visiblespec.
Private specification | Privatespec. | when Private spec. L
w th'ed
Note: Awi t h clausefor achild package impliesawi t h clause for all its ancestors.

O M A Smith - May not be reproduced without permission

Exceptions 169

11.3 Private child

A private child package is like anormal child package except that it is only visible within the sub-tree, which has
an ancestor as its root. A private child can be used to hide implementation details from a user of the parent
package. A private child package is specified by prefixing the reserved word package with the word private

11.3.1 Vighbility rules of a private child package

If in Figure 11.1 P. C2 isaprivate child then the visibility of componentsis asillustrated in the table below.

Can accessin -> P P. C2 P.C1

P. C2 Visiblespec. Visiblespec.

Visible specification ° when
with'ed

P. C2 Visiblespec. Visiblespec.

Private specification Private spec. ° when
with'ed

P. C1 Visiblespec. No access

Visible specification °

P.C1 Visiblespec.

Private specification Private spec. No access °

Note: The private part of a child package has access to all components of its parent, even the private
components.

11.4 Child packages vs. inheritance

The following table summarizes the differences between the use of a child package and inheritance.

Ability to Child package | Inheritance
Create anew package X 0
Extend a base package by adding new o] o]
procedures and functions

Extend atypein the base package X O (see note)
Access private components in the base o] X
package

Override existing procedures and functions in X o)

the base package

Note: Must be tagged in the base class.

The danger in the use of child libraries is that they can subvert the data hiding of a class. For example, the
class Interest_account hides the representation of, and prevents access to the
accurrul at ed_i nt erest . A child library of the class| nt er est _account can allow aclient of the class
the ability to change or inspect this hidden variable.

O M A Smith - May not be reproduced without permission

170 Child libraries

11.5 Salf-assessment

° How can the use of child libraries save time in the production of software?

° Why isachild library’s public specification not allowed to access componentsin aparent’s private
specification?

° What is the difference between anormal child package and a private child package?

° What is the difference between the use of a child package and the use of inheritance to build on

existing code?

11.6 Exercises

Construct the following:

° Money
A class which manipul ates amounts of money held in pounds and pence. This class should allow the
following operations to be performed on an instance of the classMoney

° Add monetary amounts using the operator +.
° Subtract monetary amounts using the operator - .
° Conver si on

A child library of the package Cl ass_noney which allows the conversion of an amount in pounds to
dollars, francs and ECU (European Currency Unit).

O M A Smith - May not be reproduced without permission

12 Defining new operators

This chapter shows how the predefined operatorsin Ada can be overloaded with a new meaning.

12.1 Defining operatorsin Ada

The existing operators in Ada can be overloaded with a new meaning. These new operators have the same
precedence as their existing counterparts. For example, to trace every executed integer + operation in a program,
the operator + can be overloaded by a function that writes trace information to the terminal before delivering the
normal integer addition. Thisisimplemented by the following function:

function "+" (F.in Integer; S:in Integer) return Integer is
begi n

Put ("[Performing "); Put(F, Wdth=>1);

Put (" + "); Put(S, Wdth=>1); Put("]");

return Standard."+"(F, S);
end "+";

Note: To performthe inbuilt + the functional notation for the plus operation must be used. Thisis written as
Sandard. "+"(f, s). In Ada, the inbuilt operators are considered to belong to the package
St andar d which isautomatically made visible to all program units.
Section C.4, Appendix C gives the specification for the package standard.

The above function can be used to trace the use of + in the following program:

with Ada. Text _| o, Ada.|nteger_Text_Io;
use Ada.Text _|o, Ada.lnteger_Text |o;
procedure Main is
function "+" (F.in Integer; S:in Integer) return Integer is
begi n
Put ("[Performing "); Put(F, Wdth=>1);
Put (" + "); Put(S, Wdth=>1); Put("]");
return Standard."+"(F, S);
end "+";
begi n
Put ("The sumof 1 + 2 is: "); Put (1+2); New_Li ne;
Put ("The sumof 1 + 2 is: ");
Put (Standard."+"(1,2), Wdth=>1); New_Line;
Put ("The sumof 1 + 2 is: ");
Put("+"(1,2), Wdth=>1); New_Line;
end Mai n;

Note; Asthe package St andar d is considered to be included with all program units. To achieve the effect
of tracing each use of +, the overloaded function"+" hasto be a nested function of the program unit.

The sumof 1 + 2 is: [Performing 1 + 2]3
The sumof 1 + 2 is: 3
The sumof 1 + 2 is: [Performing 1 + 2]3

Note: The way of directly using the operator + defined in the package Standard
" Standard. "+"(1, 2)".
The function notation for the use of the operator +" +" (1, 2) .

O M A Smith - May not be reproduced without permission

172 Child libraries
12.2 A rational arithmetic package

If precise arithmetic with rational numbers is required the Ada language can be extended by the inclusion of a
package that provides a new type Rational. Instances of this type may be used as if they were normal numeric

values such asinteger.
The following extension to the language Adais created by defining the class Rat i onal . This class defines

the following operations: +, - , * on aninstance of aRat i onal number.
The responsihilities of this class are asfollows::

M ethod Responsibility

+ Delivers the sum of two rational numbers as arational number.

- Delivers the difference of two rational numbers as a rational
number.

* Delivers the product of two rational numbers as a rational
number.

/ Delivers the division of two rational numbers as a rational
number.

In addition the following methods are used to create arational constant and to help output a rational number in
acanonical form.

M ethod Responsibility
Rat _Const Creates arational number fromtwol nt eger numbers.
| mage Returns a string image of a rational number in the canonical

form ‘a b/ c’. For example:

Put (I mage(Rat_Const(3,2)));
would print

11/2

12.2.1 Ada specification of the package

The specification of the package isasfollows:

package Cl ass_Rational is
type Rational is private;

return Rational;
return Rational;
return Rational;
return Rational;

in Rational; S:in Rational

function "+" F:
F:in Rational; S:in Rational
F:
F:

(
function "-" (
(in Rational; S:in Rational
(in Rational; S:in Rational

function "*"
function "/"

—

function Rat_Const(F:in Integer;
S:in Integer:=1) return Rational;
function |Image(The:in Rational) return String;

private
type Rational is record
Above : Integer := O; --Nuner at or
Bel ow : Integer := 1; - - Denom nat or
end record;

end d ass_Rational ;

O M A Smith - May not be reproduced without permission

Exceptions 173

Using the above package, the following code can be written:

with Ada. Text _lo, C ass_Rational;
use Ada.Text_lo, O ass_Rational;
procedure Main is

A B : Rational;

begi n
A := Rat_Const(1, 2);
B := Rat_Const(1, 3);
Put("a ="); Put(Image(A)); New_Li ne;
Put("b ="); Put(Image(B)); New_Li ne;
Put("a + b =""); Put(Image(A+B)); New Line;
Put("a - b ="); Put(Image(A-B)); New Line;
Put("b - a="); Put(Image(B-A)); New Line;
Put("a * b ="); Put(Image(A*B)); New_Line;
Put("a/ b ="); Put(Image(A'B)); New Line;
end Mai n;

D oo
'+
coooo

~ % 1

12.2.2 Ada implementation of the package

Theinternal functionsi gn makes sure that only the top part of the rational number may be negative. By ensuring
this form, the processing of rational numbersissimplifiedin later code.

package body Cl ass_Rational is

function Sign(The:in Rational) return Rational is

begi n
if The.Below >= 0 then -- -alb or alb
return The;
el se -- al-b or -al-b
return Rational'(-The. Above, -The.Below);
end if;
end Sign;

O M A Smith - May not be reproduced without permission

174 Child libraries

Theinternal function si npl i fy reduces the rational number to its simplest form. Thus the rational number
4/ 8 isreduced to 1/ 2.

function Sinplify(The:in Rational) return Rational is

Res: Rational := The;
D : Positive; --Divisor to reduce with
begi n
if Res.Below = 0 then --lnvalid treat as 0
Res. Above := 0; Res.Below := 1;
end if;
D:= 2 --Divide by 2, 3, 4 ...

while D < Res.Bel ow | oop
while Res.BelowremD = 0 and then Res. Above remD = 0 | oop
Res. Above : = Res. Above / D
Res. Bel ow : = Res. Below / D
end | oop;
D:=D + 1;
end | oop;
return Res;
end Sinplify;

Note: Itisleft to the reader to improve the efficiency of the algorithm used.

The standard operators of +, -,/ , and * are overloaded to allow these standard operations to be performed
between instances of rational numbers.

function "+" (F:in Rational; S:in Rational) return Rational is
Res : Rational;

begi n
Res. Bel ow : = F. Bel ow * S. Bel ow,
Res. Above : = F. Above * S.Below + S. Above * F. Bel ow,
return Sinmplify(Res);
end "+";
function "-" (F:in Rational; S:in Rational) return Rational is
Res : Rational;
begi n

Res. Bel ow : = F. Bel ow * S. Bel ow,

Res. Above : = F. Above * S.Bel ow - S. Above * F. Bel ow,
return Sinplify(Res);
end " - " ;

function "*" (F:in Rational; S:in Rational) return Rational is
Res : Rational;

begi n
Res. Above : = F. Above * S. Above;
Res. Bel ow : = F. Bel ow * S. Bel ow;
return Sinplify(Res);

end "*"

function "/" (F:in Rational; S:in Rational) return Rational is
Res : Rational;

begi n
Res. Above : = F. Above * S. Bel ow;
Res. Bel ow : = F. Bel ow * S. Above;
return Sinplify(Res);

end "/";

Note: Additional definitions of these standard operators would need to be provided if it was required to be
ableto performoperationssuchasRat _Const (1, 2) + 1.
In this particular case a definition of + between a rational and an integer would also need to be
provided.

O M A Smith - May not be reproduced without permission

Exceptions 175

The functionRat _Const is used to construct a constant rational number. The second formal parameter may
be omitted when converting awhole number into arational number.

function Rat_Const(F:in Integer;
S:in Integer:=1) return Rational is
begi n
if F =0 then
return Rational'(0,1);
el se
return Sinmplify(Sign(Rational'(F, S)));
end if;
end Rat _Const;

Note: A rational constant could have been created by overloading the operator / between two integers to
deliver a rational number. The disadvantage of this approach is that the two distinct meanings for /
must be distinguished between in a program section.

O M A Smith - May not be reproduced without permission

176 Child libraries

The function| mage returns a string representing a rational number in canonical form. The strategy used is to
use theinbuilt function| nt eger’ | mage to convert a number into a character string. However, as this leaves a
leading space for the sign character an internal function Tr i mis provided to strip off the leading character from
such astring.

The nested function To_St ri ng delivers a string representation in canonical form of a positive rational
number. By using a single case of recursion this function can deal with the case when a rational number is of the
form“a b/c".

function Inmage(The:in Rational) return String is
Above : Integer := The. Above;
Bel ow : Integer := The. Bel ow,

function Trim(Str:in String) return String is

begi n
return Str(Str'First+l1 .. Str'lLast);
end Trim
function To_String(Above, Below : in Integer)
return String is
begi n
i f Above = 0 then --No fraction
return "
el sif Above >= Bel ow t hen - - \Wol e nunber
return Trin(Integer'lmage(Above/Below)) &" " &
To_String(Above rem bel ow, Bel ow);
el se

return Trim Integer'|lmage(Above)) & "/" &
Trim Integer' | mage(Below));

end if;

end To_String;
begi n
if Above = 0 then

return "0"; --Zero
el sif Above < 0 then

return "-" & To_String(abs Above, Below); ---ve
el se

return To_String(Above, Below); -- +ve
end if;
end | mage;

end d ass_Rational ;

12.3 A bounded string class

A partial solution to overcome the fixed size limitations of Ad strings is to use a discriminated record that can
hold a string of any length up to a pre-defined maximum. The responsibilities of the class Bounded_St ri ng

which holds avariable length string is as follows:

M ethod Responsibility

Operator: Concatenate an Adastring or aBounded_Stri ng to

& aBounded_string.

Operators: Compare instancies of Bounded_stri ng.

> >= < <= =

To_String Convert an instance of aBounded_Stri ng toanAda
string.

To_Bounded_Stri ng | Convert an Adastring to an instance of a
Bounded_stri ng.

Slice Deliver asliceof aBounded_stri ng.

O M A Smith - May not be reproduced without permission

Exceptions

12.3.1 Overloading=and / =

177

The operators= and/ = are provided automatically by the Ada system for comparing for equality or not equality.
However, if a user redefines the = operator with a function that returns a Bool ean value, the Ada system

automatically providesthe definition of / = as simply not =.

If the operator = is overloaded by a function that returns a value other than a Bool ean, then the user must

explicitly provide an overload definition for/ = if it isto be used.

12.3.2 Specification of the classBounded_Stri ng
The Ada specification of the classBounded_St ri ng isshown below:

package C ass_Bounded_String is
type Bounded_String is private;

function To_Bounded_String(Str:in String)
return Bounded_String;

function To_String(The:i n Bounded_String) return String;

function "&" (F:in Bounded_String; S:in Bounded_String)
return Bounded_String;

function "&" (F:in Bounded_String; S:in String)
return Bounded_String;

function "&" (F:in String; S:in Bounded_String)
return Bounded_String;

function Slice(The:in Bounded_Stri ng;
Low.in Positive; H gh:in Natural)
return String;

function "=" (F:in Bounded_String; S:in Bounded_String)
return Bool ean;

function ">" (F:in Bounded_String; S:in Bounded_String)
return Bool ean;

function ">=" (F:in Bounded_String; S:in Bounded_String)
return Bool ean;

function "<" (F:in Bounded_String; S:in Bounded_String)
return Bool ean;

function "<=" (F:in Bounded_String; S:in Bounded_String)
return Bool ean;

private
Max_String: constant := 80;
subtype Str_Range is Natural range O .. Max_String;
type A Bounded_String(Length: Str_Range := 0) is record
Chrs: String(1 .. Length); --Stored string
end record;
type Bounded_String is record
V_Str : A Bounded_Stri ng;
end record;
end C ass_Bounded_Stri ng;

In the specification of the classBounded_St ri ng adiscriminated record is used. This discriminated record
A Bounded_Stri ng will store strings up to length MAX_STRI NG characters. The discriminate | engt h is
used to specify the upper bound of the string, and has a default value of 0. An instance of Bounded_Stri ng

may be assigned another instance of Bounded_St ri ng that may have a different discriminate value.

O M A Smith - May not be reproduced without permission

178 Child libraries

Note: The discriminated record will usually be implemented by allocating the maximum amount of storage.
Setting MAX_STRING to 10_000 in the package would allow for most eventualities, but would waste
large amounts of storage.

Asthe operator = is overloaded by a function which returnsaBool ean value then the operator / = is
automatically created.

In the implementation of the package Cl ass_Bounded_String shown below, the procedure
To_Bounded_Stri ng isusedto converta‘normal’ Adastring into an instance of aBounded_stri ng.

package body C ass_Bounded_String is

function To_Bounded_String(Str:in String)
return Bounded_String is
begi n
return (V_Str=>(Str'Length, Str));
end To_Bounded_Stri ng;

The functionTo_St r i ng deliversanormal Adastring fromaBounded_St ri ng.

function To_String(The:i n Bounded_String) return String is
begi n

return The.V_Str.Chrs(1 .. The.V_Str.Length);
end To_String;

The function Sl i ce allows slices to be taken off an instance of aBounded_St ri ng.

function Slice(The:in Bounded_String;
Low.in Positive; Hi gh:in Natural)
return String is
begi n
if Low <= High and then H gh <= The.V_Str.Length then
return The.V_Str.Chrs(Low .. Hgh);

end if;
return ""
end Slice;

O M A Smith - May not be reproduced without permission

Exceptions 179

The overloaded definitionsof & >, >=, <, <= alow the norma Ada comparison operators to be used with
instances of a Bounded_St ri ng. The operators for = are used by the Ada system to provide the definition of
/ =. The implementation for & allows concatenation between instances of a Bounded_Stri ng and a normal
Adastring. Thisisachieved by overloading & with three different definitions as follows:

function "&" (F:in Bounded_String; S:in Bounded_String)
return Bounded_String is
begi n
return (V_Str=>(F.V_Str.Chrs' Length + S.V_Str. Chrs' Length,
F.V_Str.Chrs & S.V_Str. Chrs));
end "&";

function "&" (F.in Bounded_String; S:in String)
return Bounded_String is
begi n
return (V_Str=>(F.V_Str.Chrs'Length + S Length,
F.V_Str.Chrs & S));
end "&";

function "&" (F:in String; S:in Bounded_String)
return Bounded_String is
begi n
return (V_Str=>(F Length + S.V_Str. Chrs' Length,
F &SV Str.Chrs));
end "&";

The implementation for the relational operators however, only allows comparison between instances of a
Bounded_St ri ng. Their implementation is as follows:

function ">" (F:in Bounded_String; S:in Bounded_String)
return Boolean is
begi n
return F.V_Str.Chrs > S.V_Str. Chrs;
end ">";

function ">=" (F:in Bounded_String; S:in Bounded_String)
return Bool ean is
begi n
return F.V_Str.Chrs >= S.V_Str. Chrs;
end ">=";

function "<" (F:in Bounded_String; S:in Bounded_String)
return Bool ean is
begi n
return F.V_Str.Chrs < S.V_Str. Chrs;
end "<";

function "<=" (F:in Bounded_String; S:in Bounded_String)
return Bool ean is
begi n
return F.V_Str.Chrs <= S.V_Str. Chrs;
end "<=";

O M A Smith - May not be reproduced without permission

180 Child libraries

The implementation of = isasfollows:

function "=" (F:in Bounded_String; S:in Bounded_String)
return Boolean is
begi n
return F.V_Str.Chrs = S.V_Str. Chrs;
end "=",

end C ass_bounded_stri ng;

Note; To compare an instance of aBounded_St ri ng and an instance of an Ada string a user would have
to convert the Ada string to aBounded_St ri ng. For example:
Nane : Bounded_Stri ng;
if Nanme > To_Bounded_String("Brighton") then

12.3.3 Putting it all together

procedure Main is
Town, County, Address : Bounded_String;

begi n
Town = To_Bounded_String("Brighton");
County := To_Bounded_String("East Sussex");
Address := Town & " " & County;

Put (To_String(Address)); New_Line;
Put(Slice(County & " UK', 6, 14));
New_Li ne;

end Mi n;

When run, this would produce the following results:

Bri ght on East Sussex
Sussex WK

12.3.4 Ada. Stri ngs. Bounded astandard library

Inthe standard library thereis apackage Ada. St ri ngs. Bounded which the above class Bounded_Stri ng
is based on. The generic library package Ada. Stri ngs. Bounded. Generi ¢c_bounded_| engt h alows
the maximum length of the stored string to be defined by a user of the package. Chapter 13 describes the concepts
of generics. Appendix C.8 liststhe specification of the library package Ada. St ri ngs. Bounded.

O M A Smith - May not be reproduced without permission

Exceptions 181

12.35use type

A modified form of the use clause allows operators from a package to be used without having to prefix the
operator with the package name. Other components however, from the package need to be prefixed with the
package name when used. This modified form of the use clause is use type which is followed by the type name
whose operators can be used without prefixing them by the package name. For example, the following program
requires all componentsin the package Bounded_St ri ng except for operators to be prefixed with the package
name.

with Ada. Text _lo, C ass_Bounded_Stri ng;
use type C ass_Bounded_String. Bounded_Stri ng;
procedure Main is
Town : Cdass_Bounded_String. Bounded_String : =
Cl ass_Bounded_Stri ng. To_Bounded_String("Bri ghton");
County: C ass_Bounded_String. Bounded_String : =
Cl ass_Bounded_String. To_Bounded_String("E Sussex");

begi n
Ada. Text _I| o. Put (
Cl ass_Bounded_String. To_String(Town & " " & County)
I
end Mai n;

12.4 Salf-assessment

) What operators can be overloaded with a new meaning in Ada?

° Can a user invent new operators? For example, could a user define the monadic operator ++ to add
oneto an integer?

) Why might excessive use of overloading the standard operators |ead to a program that is difficult to
follow?

) Why isthefunctionr at _const needed intheclassRat i onal ?

° How can a user guarantee to use the definition for the operator + in the package standard?

12.5Exercises

Construct the following class:

O M A Smith - May not be reproduced without permission

182 Child libraries

A very large integer number class.

which stores an integer number to 200 digits.

M ethod Responsihility

+ Delivers the sum of two very long integer numbers as a
very long integer number.

- Delivers the difference between two very long integer
numbers as avery long integer number.

VLN_const Creates avery long integer number from anl nt eger .

| mge Return a string representation of avery large number.

A user of theclassCl ass_Very_Lar ge_Number canwrite:

begi n

for

end

Fi bonacci _Nunbers(1)
Fi bonacci _Nunber s(2)

wi th Ada. Text _lo, O ass_Very_Large_Nunber;
use Ada.Text _lo, C ass_Very_Large_Nunber;
procedure Main is

Max_Fi bonacci : constant := 50;

type Fi bonacci _Index is range 1 .. Max_Fi bonacci ;

type Fi bonacci _Array is array (Fibonacci _Index)
of VNL;

Fi bonacci _Nunbers: Fi bonacci _Array;

VLN_Const (1);
VLN_Const (1) ;
| in Fibonacci_Index range 3 .. Max_Fi bonacci | oop

Fi bonacci _Nunbers(|) := Fibonacci _Nunbers(1-1) +

Fi bonacci _Numbers(1-2);
| oop;

Put ("First "); Put(Mux_Fibonacci, Wdth=>2);
Put (" terms in the fibonacci sequence is"); New_ Line;

for | in Fibonacci _Array'range | oop
Put (1 mage(Fi bonacci _Numbers(1l)));
New Li ne;
end | oop;
end Mai n;

which would print out the first 50 terms of the Fibonacci series.

Hint:
°

Use an array to store the 200 digits of the number.

O M A Smith - May not be reproduced without permission

13 Exceptions

This chapter looks at the way errors and exceptions are handled by the Ada system. Unlike many
languages, Ada allows the user to capture and continue processing after an error or user-defined exception
has occurred.

13.1 The exception mechanism

When writing code for an application it is tedious to have to keep testing for exceptional conditions such as ‘ Data
store full’. The likely outcome is that the user will not test for the exception. Ada provides the elegant solution of
allowing code to raise an exception that can be caught by a user of that code. If the user does not provide an
exception handler, the exception is propagated upwards to the potential caller of the user’s code. If no one has
provided an exception handler, then the program will fail with a run-time message of the form ‘Excepti on
Data store full not handl ed'.

The following program reads in an | nt eger number from the user and prints the corresponding character
represented by this number in the Ada character set.

with Ada. Text _| o, Ada.|nteger_Text_Io;
use Ada. Text_lo, Ada.lnteger_Text_Io;
procedure Main is
Nurmber : | nteger; -- Nunber read in
Ch : Character; --As a character
begi n
| oop
begin
Put ("Enter character code : "); --Ask for nunber
exit when End_O _Fil e; --EOF ?
Get (Number); Skip_Line; - - Read number
Put (" Represents the character ["); --Valid nunber
Put (Character' Val (Nunber));
Put ("1"); --Valid character
New_Li ne;
exception
when Data_Error =>
Put ("Not a valid Number"); Skip_Line; - -Exception
New_Li ne;
when Constraint_Error =>
Put ("Not representable as a Character]"); --Exception
New Li ne;
when End_Error =>
Put (" Unexpected end of data"); New_Line; --Exception
exit;
end;
end | oop;
end Mai n;

In this program the following exceptions may occur:

Exception Explanation

Constraint _Error | Aninvalid value has been supplied.

Data_Error The dataitem read is not of the expected type.
End_Error During aread operation the end of file was detected.

Section B.7, Appendix B gives a full list of the exceptions that can occur during the running of an Ada
program.

O M A Smith - May not be reproduced without permission

184 Child libraries

A user may interact with the program as shown below.

Enter character code : 65
Represents the character [A]
Enter character code : Invalid
Not a valid Nunmber

Enter character code : 999

Represents the character [Not representabl e as a Character]
Enter character code : ~D

Note: The user input i s shown in bold type.
"D represents the end of file character, which on an unix systemis control —d.

13.2 Raising an exception

An exception is raised by way of the raise statement. For example, to raise the exception
Constrai nt _Error thefollowing statement is executed:

rai se Constraint_Error;

Naturally, a user-defined exception can be raised. Firstly, the exception to be raised is declared:

Unexpected_Condi tion : Exception;

then the exception can be raised with:

rai se Unexpect ed_Conditi on;

13.3Handling any exception

It is possible to capture an exception without knowing its name by the use of a when ot hers clause in an
exception handler. For example, the additional handler:

when ot hers =>
Put (" Excepti on caught"); New_Li ne;

could have been included with the previous program to capture any unexpected exceptions. If information is
required about the exception then the handler can include a name for the exception. For example:

when The_Event: others =>

Put (" Unexpect ed exception is ");
Put (Exception_Name(The_Event)); New_ Line;

O M A Smith - May not be reproduced without permission

Exceptions 185

Note: The object Event isdeclared as:

Event : Exception_Ccurrence;

and is defined in the package Ada. Excepti ons.

In the above exception handler the exception is known by the name event . Information about the exceptionis
obtained by using the following functions:

Function Returnsasastring:

(Defined in Ada. Excepti ons)

Excepti on_Nare(event) In upper case the exception name starting
with the root library unit.

Exception_I nformati on(event) Detailed information about the exception.

Excepti on_Message(event) A short explanation of the exception.

Other functions and proceduresin Ada. Except i ons are:

Function / procedure Action

Rer ai se_Qccurrence(event) A procedure which re-raises the exception
event.

Rai se_Exception(e," Mess") A procedure which raises exception e with
the message " Mess" .

O M A Smith - May not be reproduced without permission

186 Child libraries

13.4Thecat program revisited

The program to concatenate the contents of files previously seen in Section 3.11 can now be re-written to give a
sensible error message to the user when an attempt is made to list a file that does not exist. In this program the
following exception occur:

Exception Explanation
Nane_Error File does not exist.
Status_Error Fileis aready open.

This new programiis:

with Ada. Text _l o, Ada. Command_Li ne;
use Ada.Text | o, Ada. Command_Li ne;
procedure Cat is

Fd : Ada.Text _lo.File_Type; --File descriptor
Ch : Character; --Current character
begi n
if Argunent_Count >= 1 then
for I in 1 .. Argunent_Count |oop --Repeat for each file
begi n
Open(File=>Fd, Mdde=>In_File, --Qpen file

Name=>Ar gunent (1));

while not End_O _File(Fd) loop --For each Line
whil e not End_Of _Li ne(Fd) I|oop--For each character

Get (Fd, Ch); Put(Ch); --Read / Wite character

end | oop;
Ski p_Li ne(Fd); New_Li ne; --Next line / new |ine

end | oop;

Cl ose(Fd); --Close file

exception

when Nane_Error =>
Put("cat: " & Argunment(l) & " no such file");
New_Li ne;

when Status_Error =>
Put("cat: " & Argunent(l) & " all ready open");
New_Li ne;

end;
end | oop;
el se
Put ("Usage: cat filel ... "); New_Line;
end if;
end Cat;

13.5A stack

A stack is a structure used to store and retrieve data items. Data items are pushed onto the structure and retrieved
inreverse order. Thisis commonly referred to as‘firstin last out’. Thisprocessisillustrated in Figure 13.1

Stack

After sending -
message Push(1) Push(2) Pop() Pop()

2 1

Figure 13.1 Example of operations on astack.

O M A Smith - May not be reproduced without permission

Exceptions 187

A program to demonstrate the operation of a stack is developed with the aid of aclass St ack. The operations
Push, Pop and Reset can be performed on an instance of St ack . The responsibilities of these methods are as

follows:

Method | Responsibility

Push Push the current item onto the stack.
The exception St ack_er r or will beraised if this cannot be done.

Pop Return the top item on the stack, whereupon the item is removed from the
stack. The exception St ack_error will be raised if this cannot be
done.

Reset Resets the stack to an initial state of empty.

The Ada specification of the classSt ack isasfollows:

package d ass_Stack i s
type Stack is private; - -Copyi ng al | owed
Stack_Error: exception; --\\en error

procedure Reset(The:in out Stack);

procedure Push(The:in out Stack; Itemin Integer);

procedure Pop(The:in out Stack; Itemout Integer);
private

Max_St ack: constant := 3;

type Stack_Index is range 0 .. Mx_Stack;

subtype Stack_Range is Stack_Index range 1 .. Max_Stack;
type Stack_Array is array (Stack_Range) of Integer;

type Stack is record
El ements: Stack_Array; --Array of elenents
Tos . Stack_Index := 0; - -1 ndex

end record;

end d ass_St ack;

In the specification of the class, St ack the actual representation used for the stack is an array. The array
representing the stack isindexedfrom1 .. Max_St ack. However, so that an empty stack can be represented
the variable holding the index to the current element in the stack TOS is allowed to hold the value 0 to represent
an empty stack. Hence, in the specification of the array the following types and subtypes are used.

Type/subtype Responsibility

St ack_I ndex A type representing the index used to access the stack. Asthisis
also used to represent an empty stack, it includes the value O,
which is not avalid index of the stack.

St ack_Range A subtype used to represent the valid range of indexes in the
stack.

Stack_array The type used to declare the array representing the stack.

The following simple program demonstrates the operation of a stack. The program reads a line of text that
consists of the following tokens:

Token M eaning
+Nurber Push Number
Add Number to the stack.
- Pop
Remove the top item from the stack and print the removed item.

O M A Smith - May not be reproduced without permission

188 Child libraries

w th Ada. Text _I o, Ada.lInteger_Text lo, Cass_Stack;
use Ada.Text_lo, Ada.lnteger_Text_lo, C ass_Stack
procedure Main is
Nurmber _Stack : Stack; --Stack of nunbers
Acti on : Character; --Action
Nunber . Integer; --Nunber processed
begi n
while not End_O _File | oop
whil e not End_O _Line | oop
begi n
Get(Action);
case Action is --Process action

when '+ =>
Get (Number); Push(Number _Stack, Nunber) ;
Put ("push number = "); Put(Nunber); New_Line

when '-' =>
Pop(Nunmber _St ack, Nunber) ;
Put ("Pop nunber = "); Put(Number); New_Line;

when ot hers =>
Put ("I nvalid action"); New_Line;
end case
exception
when Stack_Error =>
Put ("Stack_error"); New_Line;
when Data Error =>
Put ("Not a nunber"); New_Line; Skip_Line;
when End_Error =>
Put (" Unexpected end of file"); New_Line; exit;
end;
end | oop;
Ski p_Li ne
end | oop;

Reset (Nunber_Stack);
end Main;

13.5.1 Putting it all together

When compiled with a suitable package body the above program when run with the following data:

+14243+4- - - -

will produce the following output:

push nunber
push nunber
push nunber
St ack_error
Pop nunber
Pop nunber
Pop nunber
Stack_error

Inu
WN -

o
=N W

13.5.2 Implementation of the stack

The implementation of the package uses the procedure r eset to set the stack to a defined state, in this case
empty.

O M A Smith - May not be reproduced without permission

Exceptions 189

package body C ass_Stack is

procedure Reset(The:in out Stack) is
begi n

The.Tos := 0; --Set TOSto O (Non existing el enent)
end Reset;

The exception St ack_Er r or israised by the procedure Push if an attempt is made to add a new item to a

full stack.
procedure Push(The:in out Stack; Itemin Integer) is
begi n
if The.Tos /= Max_Stack then
The. Tos : = The. Tos + 1; -- Next el enment
The. El enents(The.Tos) := ltem --Mve in
el se
rai se Stack_Error; --Failed
end if;
end Push;

The procedure Pop similarly raises the exception St ack_Err or if an attempt is made to extract an item
from an empty stack.

procedure Pop(The:in out Stack; Item:out Integer) is
begi n
if The.Tos > 0 then
Item: = The. El enents(The. Tos); -- Top el enent
The. Tos : = The. Tos - 1; -- Move down
el se
rai se Stack Error; --Fail ed
end if;
end Pop;
end d ass_St ack;

13.6 Self-assessment

) When should an exception be used?

) What happens when an exception is not caught in auser program?

) How can a program catch all exceptions which might be generated when executing a code sequence?
) Can a user program raise one of the system’s exceptions such asConstrai nt _error?

O M A Smith - May not be reproduced without permission

190 Child libraries
13.7 Exercises

Construct the following class which uses exceptions:

° Average
This class has the following methods:

M ethod Responsibility

Add Add anew datavalue.

Aver age Deliver the average of the data values held.
Reset Reset the object to itsinitial state.

The exception No_Dat a israised when an attempt is made to calculate the average of zero numbers.

O M A Smith - May not be reproduced without permission

14 Generics

This chapter looks at generics that enable parameterized re-usable code to be written. The degree of re-
useability, however, will depend on the skill and foresight of the originator.

14.1 Generic functions and procedures

The main problem in re-using code of previously written functions or procedures is that they are restricted to
process specific types of values. For example, the functionor der developed as an exercise in Chapter 5 will only
work for Fl oat values. To bereally useful to a programmer, this procedure should work for all objects for which
a ‘greater than’ value can be defined. Ada allows the definition of generic functions or procedures. In this, the
actual type(s) that are to be used are supplied by the user of the function or procedure. Thisis best illustrated by

an example:
generic --Speci fication
type T is (<>); --Any discrete type
procedure G Order(A B:in out T); --Prototype ord
procedure G Order(A B:in out T) is --Inplenentation ord
Tnp @ T, --Tenporary
begi n
if A> B then - - Conpar e
Tmp := A A:=B; B := Tnp; -- Swap
end if;
end G Order; --

The declaration of a generic function or procedure is split into two components: a specification part that
defines the interface to the outside world, and an implementation part that defines the physical implementation. In
the specification part, the type(s) that are to be used in the procedure are specified between the gener i ¢ and the
prototype line of the function or procedure. In this example asingletype T is to be supplied. The type T must be
one of Ada'sdiscretetypes. The'(<>)’ inthedeclaration‘t ype T is (<>)’ specifiesthisrestriction. A full
list of the restricted types to which a generic parameter can be constrained to are given in Section 14.2.

To use this procedure the user must first instantiate a procedure that will operate on a particular type. Thisis
accomplished by the declaration:

procedure Order is new G Order(Natural); --Instantiate order

which defines aprocedure or der which will put into ascending order itstwo Nat ur al parameters. It would, of
course, be an error detected at compile-time to use the procedure or der with any parameter of atype other than a
Nat ur al or asubtype of aNat ur al .

O M A Smith - May not be reproduced without permission

192 Child libraries

Another generic procedure G_30rder can be written which will order its three parameters. This new procedure
uses an instantiation of the procedure G_Or der internaly.

generic --Speci fication
type T is (<>); --Any discrete type
procedure G 3Order(A/B,Cin out T); --Prototype ord
with G O der;
procedure G 3Order(A/B,Cinout T) is --Inplenentation ord
procedure Order is new GOder(T); --Instantiate order
begi n
Oder(A B); --S L -
Oder(B, C); --?2 2?2 L
Oder(A B); --S ML
end G 3Order; - -
Note: The generic parameter T can only be a member of the discrete types. This is achieved with the

declaration of thetypeTas‘type T is (<>)’.
The procedure or der in the procedure G _3Or der is an instantiation of the generic procedure
G _Order with anactual parameter of typeT.

Figure 14.1 illustrates the components of a generic procedure.

Theformal type specifiesthe
category of types to which the
generic parameter can belong
Specification of

generic p@j‘ /Gener ic /

type Tis (<>);

procedure G Order(A B:in out T);

-

Implgrnmtatlon of /" G Oder(A B:inout T) is
generic procedure T

begi n '
-- Code of generic procedure

end G Order;
\ —

procedure

Figure 14.1 Components of ageneric procedure declaration.

O M A Smith - May not be reproduced without permission

Exceptions

The above generic procedures G_Or der and G+3Or der alow the following code to be written:

193

with Ada. Text _l o, Ada.Integer_Text_lo, G 3Order;
use Ada.Text _l|o, Ada.lnteger_Text |o;
procedure Main is
procedure Order is new G 3Order(Natural); --Instantiate
Roonl : Nat ural 30; --30 Square netres
Roon? : Nat ural 25; --25 Square netres
RoonB : Nat ural 20; --20 Square netres
begi n
Order (Rooml, Roon2, RoonB);
Put ("Roons in ascendi ng order of size are "); New_Line;
Put (Roonl); New_Li ne;
Put (Roon2); New_Li ne;
Put (RoonB); New_Li ne;
end Mai n;

which would produce the following results when run:

Roons in ascendi ng order of size are
20
25
30

14.1.1 Advantages and disadvantages of generic units

Advantages ° Facilitate re-use by allowing an implementor to write
procedures or functions which process objects of atype
determined by the user of the procedure or function.

Disadvantages ° Extra care must be exercised in writing the procedure or
function. Thiswill undoubtedly result in a greater cost
to the originator.

° The implementation of the generic procedure, function
or package may not be as efficient asadirect
implementation. The compiler may generate only one
seguence of code to handle all instances of the generic
procedure, function or package.

O M A Smith - May not be reproduced without permission

194 Child libraries
14.2 Specification of generic component

The formal type specification constrains the actual type passed as a parameter to belong to a particular category of
types. Examples of these categories are listed in the table below:

Formal type specification In Actual parameter can belong to| Note
type T Ada 83 | the following types
is private O | Any non limited type. 1
islinmted private (0] Any type. 2
is tagged X Any non limited tagged type. 1
is linited tagged X Any tagged type. 2
is (<) O | Any discrete type, constrained type| 1,5
(<>) is private X Any discrete or indefinite non 2,3
limited type.
(<>) is limted X Any discrete or indefinite type. 2,3
private
is nod <> X Any modular type. 1
is range <> 0 Any integer type. 1
is digits <> (0] Any float type. 1
is delta <> 0O Any fixed ordinary type. 1
is delta <> digits <> X Any fixed decimal type. 1
is access O | Any accesstype. 4
with procedure ... (0] procedure matching the signature. 6
wi th package ... X package matching the signature. 6

Notel Theformal parameter inthegeneric unitisrestricted to a use compatible with the actual parameter.

Note2 Theformal parameter isrestricted to operations which are compatible with a limited type. Thus,
assignment of, and the default comparison for equality and not equality are prohibited.

Note3 Cannot be used to declare an indefinite type without declaring itsrange. For example, the indefinite
type:
type String is array (Positive range <>) of Character;
cannot be declared without specifying the range.

Note4 Accesstypesarecoveredin chapter 14.
May alsobei s access all ori s access const ant

Note5 Ada 83 hasthe well-known problemthat an indefinite type may be used as a formal parameter. If the
formal parameter is used to declare an object in the body of the generic unit, then on the instantiation
of the unit an error message will be generated from the body of the generic unit.

Note6 Used to specify a procedure, function or package that is used in the body of the generic unit.

O M A Smith - May not be reproduced without permission

Exceptions 195

14.3 Generic stack

The stack illustrated in Section 13.5 can be built as a generic package. First, the specification of the package that
contains the generic components is defined:

generic
type T is private; --Can specify any type
Max_Stack:in Positive := 3; --Has to be typed / not const
package O ass_Stack i s
type Stack is tagged private;
Stack_Error: exception;

procedure Reset(The:in out Stack);

procedure Push(The:in out Stack; Itemin T);

procedure Pop(The:in out Stack; Iltemout T);
private

type Stack_lI ndex is new I nteger range 0 .. Max_Stack;
subtype Stack _Range is Stack_| ndex

range 1 .. Stack_| ndex(Max_Stack);
type Stack_Array is array (Stack_Range) of T;

type Stack is tagged record

El enents: Stack_Array; --Array of elenents
Tos . Stack_Index := 0; - - ndex
end record;

end O ass_St ack;

Note: The constant Max_ St ack must be given a type becauseit is passed as a generic parameter.

The implementation of the package follows the same strategy as seen in Section 13.5.2 except that the
constant that defines the size of the stack is now typed. The body of the package takes this into account by
converting the constant object Max_ St ack into an object of type St ack | ndex. The body of the package is

implemented as follows:

package body Cl ass_Stack is

procedure Push(The:in out Stack; Itemin T) is

begi n
if The. Tos /= Stack_l ndex(Max_Stack) then
The. Tos : = The. Tos + 1; -- Next el enent
The. El enents(The.Tos) := Item --Mve in
el se
rai se Stack_Error; --Fail ed
end if;
end Push;

O M A Smith - May not be reproduced without permission

196 Child libraries

The procedure pop returns the top item on the stack.

procedure Pop(The:in out Stack; Item out T) is
begi n
if The.Tos > 0 then
Item: = The. El enents(The. Tos); -- Top el enent
The. Tos := The. Tos - 1, -- Move down
el se
rai se Stack_Error; --Failed
end if;
end Pop;

The procedurer eset resetsthe stack to empty.

procedure Reset(The:in out Stack) is
begi n

The. Tos :=0; --Set TOSto O (Non existing el enent)
end Reset;

end d ass_St ack;

A generic package cannot be used directly. First an instantiation of the package must be made for a specific
type. For example, to instantiate an instance of the above package Cl ass_ St ack to providean| nt eger stack,

the following declaration is made:

with Cass_Stack;
pragnae El aborate Al |l (C ass_Stack);
package C ass_Stack_Int is new O ass_Stack(lnteger);

Note: Asthe size of the stack is not specified the default value of 3 is used.

The pragma to cause an eloboration of the generic package. This causes the compiler to generate a

specific instance of the package.

The newly created package Cl ass_St ack_| nt canthen be used in aprogram.

O M A Smith - May not be reproduced without permission

Exceptions 197

14.3.1 Putting it all together

The new package Cl ass_st ack_i nt is tested by the following program unit which is identical to the code
seen in Section 13.5 except the with'ed and used’ed package is Cl ass_Stack_Int rather than
Cl ass_St ack..

with Ada. Text _l o, Ada.Integer_Text_lo, Cass_Stack_Int;
use Ada.Text_lo, Ada.lnteger_Text_lo, Cass_Stack_Int;
procedure Main is

Nunber Stack : Stack; --Stack of nunbers

Action . Character; --Action

Nunber . Integer; --Nurmber processed
begi n

while not End_O _File | oop
whil e not End_Of _Line |oop
begi n
Get(Action);
case Action is --Process action
when '+ =>
Get (Number); Push(Number _St ack, Nunber) ;
Put ("push nunber = "); Put(Nunber); New Line;

when '-' =>
Pop(Nunber _St ack, Nunber) ;
Put ("Pop nunmber = "); Put(Nunber); New_Line;

when ot hers =>
Put ("I nvalid action"); New_Line;
end case;

exception
when Stack_Error =>
Put ("Stack_error"); New_Line;
when Data Error =>
Put ("Not a number™); New_Li ne; Skip_Line;
when End_Error =>
Put (" Unexpected end of file"); New_Line; exit;
end;
end | oop;
Ski p_Li ne
end | oop;

Reset (Nunber_Stack);
end Mai n;

When run with the following data:

+14243+4- - - -

the following results will be produced:

push nunber
push nunber
push nunber
Stack_error
Pop nunber
Pop nunber
Pop numnber
Stack_error

I n
WN B

N W

O M A Smith - May not be reproduced without permission

198 Child libraries
1.1.2 Implementation techniquesfor a generic package

The implementation of a generic package is usually performed by one of the following mechanisms:

) A new package is generated for each unique instantiation of the generic package. This is sometimes
referred to as the macro implementation.

° A single code body is used which can cater for different formal types.

14.4 Generic formal subprograms

When specifying a generic formal type, the compiler must know how to perform operations on an instance of this
type. For example, if the formal type is specified as private, then any Ada private type can be used. The
implementor of the body of the generic package may wish to use instances of this type in a comparison. For
example, as part of alogical expression:

if Instance_Of _Fornmal _Type > Anot her _Instance_O _Fornal _type then

end'i'f;

For thisto be allowed, the type passed must allow, in this case, for the" >" operation to be performed between
instances of the generic type. To enforce this contract the specification part of the generic procedure, function or
package must include a generic formal parameter for the " >" logical operation. Remember, the type passed may
not have " >" defined between instances of the type. For example, the class Account does not provide any
comparison operators between instances of an Account .

The following generic procedure which orders its formal parameters of type pri vat e is defined with a
formal subprogram specification for " >" .

generic --Specification
type T is private; --Any non limted type
with function ">" (A B:in T)
return Boolean is <>; --Need def for >
procedure G Order(A B:in out T); --Prototype G Order
procedure G Order(A/B:in out T) is --Inplementation G O der
Tmp @ T,
begi n
if A> B then - - Conpar e
Tmp := A, A:=B; B := Tnp; - - Swap
end if;
end G Order; - -

The generic formal subprogram:

with function ">" (A B:in T)
return Bool ean is <>; --Need def for >

specifies that on instantiation of the package, a definition for ">" between instances of the formal parameter T
must be provided. The <> part of the generic formal subprogram specifies that this formal parameter has as a
default value of the current definition for ">" at the point of instantiation of the generic.

O M A Smith - May not be reproduced without permission

Exceptions 199

Thus, an instantiation of aprocedureor der to order twoNat ur al valueswould be:

with G Order;
procedure Order is new G Order(Natural); --Instantiate

Note: The default value for the function ">" isthe current definition for ">" between Nat ur al s at the point

of instantiation. If the operator ">" has not been overloaded it will be the intrinsic function defined in
St andard for " >" .

Naturally, if the operator " >" is not defined between instances of the formal type T, a compile-time
error message will be generated.

If the generic formal subprogram had been of the form:

with function ">" (A B:in T)
return Bool ean; --Need def for >

then the formal parameter does not have a default value and therefore an actual parameter for a function with
signature function (a, bin T) must be specified on the instantiation. In this case the instantiation of or der
would be:

with G O der;
procedure Order is new G Order(Natural, ">"); --lInstantiate

Note: If the function ">" has not been overloaded then the function used will be the intrinsic function for ">"
in the package St andar d.

If the instantiation had been :

with G Oder;
procedure Order is new G Order(Natural, "<");

Then the items would be ordered in descending order.

O M A Smith - May not be reproduced without permission

200 Child libraries

14.4.1 Example of the use of the generic procedureG_3Or der

A program to order the height of three people is shown below. In this program, a record of type Per son is
created for each of the individuals. A specific instance of the generic procedure G_3COr der is created to order
these records into ascending height order.

with Ada. Text _lo, G 3Order;

use Ada. Text |o;

procedure Main is
Max_Chs : constant := 7;
type Cender is (Ferale, Male);
type Height _Cmis range 0 .. 300;
type Person is record

Name : String(1 .. Max_Chs); --Nane as a String
Hei ght : Height_Cm:= 0; --Height in cm
Sex . Gender; --Gender of person

end record;

function G (First, Second:in Person) return Boolean is

begi n
return First.Height > Second. Hei ght;
end G ;
procedure Order is new G 3Order(Person, &G); --Instantiate

Personl : Person :
Person2 : Person :
Person3 : Person :

("Corinna", 171, Fenmle);
("Mranda", 74, Fenmle);
("M ke ", 183, Male);

begi n
Order(Personl, Person2, Person3);
Put ("Li st of people in ascendi ng height order are"); New_Line;
Put (Personl. Nane); New_Li ne;
Put (Person2. Name); New_Li ne;

Put (Person3. Narme); New_Li ne;
end Mai n4;

which when run would print:

Li st of people in ascending height order are

M randa
Cori nna
M ke
14.4.2 Summary
The following table summarizes the effect of different subprogram specifications for aformal parameter.
Generic formal subprogram Explanation
with function ">" (a, b:in T)|Hasadefault value of the current
return Bool ean is <>; definition of " >" at the point of

instantiation of the generic subprogram.
with function ">" (a, b:in T)| Takesthevalue of theformal parameter

return Bool ean; ">" atthe point of instantiation of the
generic subprogram.
with procedure exec is exec; Takesthe value of the formal parameter
at the point of definition of the generic
subprogram.

O M A Smith - May not be reproduced without permission

Exceptions 201
14.5 Sorting

Some of the simplest sorting algorithms are based on the idea of a bubble sort. In an ascending order bubble sort,
consecutive pairs of items are compared, and arranged if necessary into their correct ascending order. The effect
of this processisto move the larger itemsto the end of the list. However, in a single pass through the list only the
largest item not already in the correct position will be guaranteed to be moved to the correct position. The process
of passing through the list exchanging consecutive items is repeated until all the itemsin the list are in the correct
order. For example, the following list of numbersisto be sorted into ascending order:

20| 10| 17| 18| 15| 11

The first pass of the bubble sort compares consecutive pairs of numbers and orders each pair into ascending
order. Thisisillustrated in Figure 14.2 below.

20 10 10 10 10 10
10 I 20 17 17 17 17
17 17 I 20 18 18 18
18 18 18 I 20 15 15
15 15 15 15 I 20 11
11 11 11 11 11 I 20

Figure 14.2 Thefirst pass of the bubble sort.

Each pass through the list of numbers moves the larger numbers towards the end of the list and the smaller
numbers towards the start of the list. However, only one additional number in the list is guaranteed to be in the
correct position. The result of cumulative passes through the list of numbersisillustrated in the table below.

List of numbers Commentary
20| 10| 17| 18| 15| 11 The original list.

10l 171 181 151 11| 20 After the 1st passthrough thelist.

10l 17! 151 1121 18] 20 After the 2nd pass through the list.

10l 151 111 17| 18| 20 After the 3rd pass through the list.

10l 1121 151 17| 18| 20 After the 4th pass through the list.

The process is repeated until there have been no swaps during asingle passthrough the list. Thus, after the 4th
pass an additional pass through the list will be made in which no changes will occur. Thisindicates that the list is
sorted.

14.5.1 Efficiency

This variation on the bubble sort is not a very efficient algorithm, asin the worse case it will take n passes through
the list to rearrange the data into ascending order, where n is the size of the list. Each pass through the list will
result inn- 1 comparisons.

The big O notation is used to give an approximation of the order of an algorithm. For this modified bubble sort
the order (number of comparisons) will be approximately O(n2). For a small amount of data this is not important,
but if n islarge then the number of comparisons will be very large, and hence the time taken to sort the data will
be lengthy.

O M A Smith - May not be reproduced without permission

202 Child libraries

14.6 A generic procedureto sort data

A generic sort procedure using the above variation of the bubble sort algorithm has the following specification:

generic
type T is private; --Any non limted type
type Vec_Range is (<>); --Any discrete type
type Vec is array(Vec_Range) of T,

with function ">"(First, Second:in T) return Boolean is <>
procedure Sort(ltenms:in out Vec);

The generic formal parametersfor the procedure Sor t are:

Formal parameter Description
type Tis private; The type of dataitem to be sorted.
type Vec_Range i s (<>); The type of theindex to the array.
type Vec is array(Vec _Range) of T, The type of the array to be sorted.
wi th function ">"(First, Second:in T) A function that the user of the
return Boolean is <>; generic procedure provides to
compare pairs of dataitems.

The implementation of the generic procedureis:

procedure Sort(ltenms:in out Vec) is
Swaps : Bool ean : = True;
Tnp N
begi n
whil e Swaps | oop
Swaps : = Fal se;
for I in Items'First .. Vec_Range' Pred(ltens'Last) | oop
if Items(|) > Itens(Vec_Range' Succ(l)) then
Swaps : = True
Tnp := Itenms(Vec_Range' Succ(l));
Itens(Vec_Range' Succ(l)) :=Iltems(|);
Itenms(|) := Tnp;
end if;
end | oop;
end | oop
end Sort;
Note: Passes through the data are repeated until there are no more swaps.

Theuseof ' Succ deliversthe next index. Remember the array might have an index of an enumeration
type, so + cannot be used.

O M A Smith - May not be reproduced without permission

Exceptions 203

14.6.1 Putting it all together

The following program illustrates the use of the generic procedure sor t to sort alist of charactersinto ascending
order.

with Ada. Text lo, Sort;
use Ada. Text _lo;
procedure Main is

type Chs_Range is range 1 .. 6;

type Chs is array(Chs_Range) of Character;
procedure Sort_Chs is new Sort (

T => Character,

Vec_Range => Chs_Range,

Vec => Chs,

"> = ">");
Some_Characters : Chs :=('q", 'wW, 'e, 'r', "t', "y),

begi n

Sort _Chs(Some_Characters);
for I in Chs_Range |oop

Put (Sone_Characters(|)); Put(" ");
end | oop;
New_Li ne;
end Mai n;
Note: The actual parameters used in the instantiation of the proceduresort _chs.

When run, thiswill print:

eqrtwy

14.6.2 Sorting records

A program to sort an array of recordsis shown below. In this program each record represents a person’ s name and
height. First, the declaration of the type Per son whichiis:

with Ada. Text _lo, Sort;
use Ada. Text _lo;
procedure Main is
Max_Chs : constant := 7;
type Height _Cmis range 0 .. 300;
type Person is record
Nanme : String(1 .. Max_Chs); --Nane as a String
Hei ght : Height_Cm:= 0; --Height in cm
end record;
type People_Range is (First, Second, Third, Forth);
type Peopl e i s array(Peopl e_Range) of Person;

O M A Smith - May not be reproduced without permission

204 Child libraries

Then the declaration of two functions: the function Cp_Hei ght that returns true if the first person is taller
than the second and the second function Cnp_ Narre that returnstrue if the first person’s name collates later in the
a phabet than the second.

function Cnp_Hei ght (First, Second:in Person) return Boolean is
begi n
return First.Hei ght > Second. Hei ght;
end Cnp_Hei ght ;

function Crp_Nanme(First, Second:in Person) return Boolean is

begi n
return First.Nanme > Second. Nane;
end Cnp_Nane;

Two instantiations of the generic procedure sort are made, the first to sort people into ascending height
order, the second to sort people into ascending name order.

procedure Sort_Peopl e_Height is new Sort (
T => Per son,
Vec_Range => Peopl e_Range,
Vec => Peopl e,
"> => Onp_Hei ght);
procedure Sort_People_Nane is new Sort (
T => Per son,
Vec_Range => Peopl e_Range,
Vec => Peopl e,
"> => Cnp_Nane);

The body of the program which orders the friends into ascending height and name order is:

Friends : People := (("Paul ", 146), ("Carol ", 147),
("M ke ", 183), ("Corinna", 171));
begi n
Sort_Peopl e_Nane(Friends); --Nanme order
Put("The first in ascending nanme order is ")
Put (Friends(First).Name); New_Line;
Sort _Peopl e_Hei ght (Friends); - -Hei ght order

Put("The first in ascending height order is ");
Put (Friends(First).Name); New_ Line;
end Mi n;

which when run will print:

The first in ascending name order is Carol
The first in ascending hei ght order is Paul

14.7 Generic child library

The stack seen in Section 13.5 can be extended to include the additional methods of:

M ethod Responsibility
Top Return the top item of the stack without removing it from the stack.
Itens Return the current numbers of itemsin the stack.

O M A Smith - May not be reproduced without permission

Exceptions 205

An efficient implementation is to access the private instance attributes of the classSt ack directly. Thiscan be
done by creating a child package of the generic package Class_St ack. However, asthe parent classis generic, its
child package must also be generic. The specification of this generic child packageis as follows:

generic
package C ass_Stack.Additions is
function Top(The:in Stack) return T;
function Itens(The:in Stack) return Natural;
private
end d ass_St ack. Addi ti ons;

Note: As the child can see the components of the parent, it can also see any generic types.
The implementation of the classisthen:

package body C ass_Stack. Additions is

function Top(The:in Stack) return Tis
begi n

return The. El enents(The. Tos);
end Top;

function Itens(The:in Stack) return Natural is
begi n

return Natural (The. Tos);
end |tens;

end Cl ass_St ack. Addi ti ons;

A generic child of a package is considered to be declared within the generic parent. Thus, to instantiate an
instance of the parent and child the following codeis used:

with C ass_Stack;
pragma El aborate Al Il (C ass_Stack);
package C ass_Stack_Pos is new O ass_Stack(Positive, 10);

with C ass_Stack Pos, C ass_Stack. Additions;
pragma El aborate Al l (C ass_Stack _Pos, O ass_Stack.Additions);
package C ass_Stack_Pos_Additions is
new Cl ass_St ack Pos. Addi ti ons;

Note: The name of the instantiated child package is an Ada identifier.

O M A Smith - May not be reproduced without permission

206 Child libraries
14.7.1 Putting it all together

The following program tests the child library:

wi th Ada. Text _l o, Ada.l|nteger_Text_Io,
Cl ass_Stack_Pos, C ass_Stack Pos_Additions;
use Ada. Text | o, Ada.lnteger_Text |o,
Cl ass_Stack Pos, O ass_Stack Pos Additions;
procedure Main is
Numbers : Stack;
begi n
Push(Nunbers, 10);
Push(Numbers, 20);
Put("Top item™); Put(Top(Numbers)); New_Line;
Put ("Itens "); Put(Items(Numbers)); New_Line;
end Main;

which when run gives these results:

Top item 20
Itens 2

14.8 Inheriting from a generic class
The class St ack seen in Section 13.5 and its generic child seen in Section 14.7 can be extended to include the
additional method of:

M ethod Responsihility
Dept h Return the maximum depth that the stack reached.

The specification for the new classBet t er _St ack is:

with Class_Stack, O ass_Stack. Additions;
generic

type T is private;

Max_Stack:in Positive := 3; --Has to be typed / not const
package Class_Better_Stack is

package C ass_Stack T is new O ass_Stack(T, Max_St ack) ;

package Cl ass_Stack_T_Additions is new C ass_Stack_T. Addi ti ons;

type Better_Stack is new Class_Stack T.Stack with private;

procedure Push(The:in out Better_Stack; ltemin T);
function Max_Depth(The:in Better_Stack) return Natural;

private
type Better_Stack is new Class_Stack T.Stack with record
Depth : Natural := 0;
end record;

end Cl ass_Better_Stack;

Note: Be aware of the instantiation of the base dass St ack and its generic child within the body of the
inheriting class.
The procedure push isoverloaded so that it can record the maximum depth reached.

O M A Smith - May not be reproduced without permission

Exceptions

The implementation of thisinherited classis:

207

package body d ass Better_Stack is

procedure Push(The:in out Better_Stack; ltemin T) is
D : Natural;
begi n
Class_Stack_T. Push(C ass_Stack_T. Stack(The), Item);
D:= Class_Stack_T Additions.ltens(Cl ass_Stack_T. Stack(The));
if D> The.Depth then
The. Depth : = The. Depth + 1;
end if;
end Push;

function Max_Depth(The:in Better_Stack) return Natural is
begi n

return The. Dept h;
end Max_Dept h;

end O ass_Better_Stack;

14.8.1 Putting it all together

Aninstantiation of the classBet t er _st ack for Posi t i ve numbersis created with the declaration:

with Cl ass_Better_Stack;
pragma El aborate All (O ass_Better_Stack);
package Cl ass_Better_Stack_Pos is
new Cl ass_Better_Stack(Positive, 10);

Thisisthen used in asmall test program of the new class as follows:

with Ada. Text _l o, Ada.lnteger_Text _lo, C ass_Better_Stack_Pos;
use Ada.Text _lo, Ada.Integer_Text_lo, C ass_Better_Stack_Pos;
procedure Main is
Nurmbers : Better_Stack;
Res . Positive;
begi n
Put ("Max depth "); Put(Max_Depth(Numbers)); New Line;
Push(Numbers, 10);
Push(Numbers, 20);
Put ("Max depth "); Put(Max_Depth(Numbers)); New Line;
Push(Numbers, 20);
Put ("Max depth "); Put(Max_Dept h(Numbers)); New_Li ne;
Pop(Nunmbers, Res);
Pultl("Max depth "); Put(Max_Depth(Numbers)); New Line;
nul | ;
end Mai n;

which when run produces the following results:

Max depth
Max dept h
Max dept h
Max depth

wWwwnN O

O M A Smith - May not be reproduced without permission

208 Child libraries

14.9 Salf-assessment

° How do generic functions and packages help in producing re-usable code?

° Why can an implementor specify the possible types that can be used as a generic parameter to their
package, procedure or function?

° What mechanism(s) prevent a user supplying an inappropriate type as a generic parameter, for
example, an instance of the classAccount to ageneric sort procedure? Thiswould be inappropriate
as the comparison operator " >" isnot defined between instances of anAccount .

14.10 Exercises

Construct the following procedure:

° Sort (Better)
Modify the sort package so that a pass through the data does not consider items that are already in the
correct order.

Construct the following classes:

° Store
A store for dataitems which has asits generic parameters the type of the item stored and the type of the
index used. The generic specification of the classis:

generic
type Store_index is private; --
type Store_elenent is private; --
package O ass_store is
type Store is limted private; -- NO copyi ng
Not _there, Full : exception;

procedure add (the:in out Store;
i ndex: in Store_index;
itemin Store_el enent);
function deliver(the:in Store;
index:in Store_index)
return Store_el enent;
private

end d ass_store;

° Better Store
By adding to the classst or e, provide a class which will give a user of the class information about how

many additional items may be added before the store fills up.

O M A Smith - May not be reproduced without permission

15 Dynamic memory allocation

This chapter shows how storage can be alocated and de-allocated arbitrarily by a program. An
undisciplined use of this facility can lead to programs that are difficult to debug and fail in unpredictable
ways.

15.1 Access values

Adaallows the access value of an object to be taken. An access value is a pointer or reference to an object which
can be manipulated and used to access the original object. An access value is usually implemented as the physical
address of the object in memory. For example, the declaration shown below elaborates storage for an object which
isto hold an integer value.

Peopl e : aliased Integer;

Note: In the declaration of peopl e the prefixal i ased denotes that an access value of the object peopl e
may be taken. If the prefix is omitted the access val ue of the object may not be taken.

The storage for peopl e can be visualized asillustrated in Figure 15.1.

People | 24

Figure 15.1 Storage for an instance of anl nt eger object.

To storeavaueintothel nt eger object, anormal assignment statement is used:

Peopl e 1= 24;

whilst the declaration:

type P_Integer is access all Integer;

P_People : P_lnteger;

usesthe accesstype P_I nt eger to declare an object P_Peopl e to hold an access value for an integer object. In
the declaration of the access type P_I nt eger the keyword al | signifies that read and write access may be
made to the object described by the access value. The following code assignsto p_peopl! e the access value of

peopl e:
P_Peopl e : = Peopl e' Access; --Access val ue for people
Note: Theattribute' Access isused which deliversfrom an object its access value.

Accessis used both as a keyword and as an attribute name.
The attribute 'Access can only be used when the object will exist for all the life-time of the access value.
See Section 15.7 for a more detailed explanation of the consequences of this requirement.

O M A Smith - May not be reproduced without permission

210 Polymorphism

The storage for P_Peopl e can be visualized asillustrated in Figure 15.2.

P Peopl e —1—»| 24 |People

Figure 15.2 Storage for P_Peopl e after it has been assigned the accessvalue of peopl e.

15.1.1 Accessto an object viaitsaccessvalue

To access an object viaits access value requiresthe use of . al | which de-references the access value. This may
be thought of as an indirection operator. For example, the following program accesses the object peopl e by
using the access value for Peopl e stored in the object P_Peopl e.

with Ada. Text _| o, Ada.lnteger_Text _Io0;
use Ada.Text _|o, Ada.lnteger_Text |o;
procedure Main is
type P_Integer is access all Integer;
Peopl e . aliased Integer;
P_People : P_lnteger;
begi n
Peopl e = 24;
P_Peopl e : = Peopl e' Access; --Access val ue for people
Put (" The nunber of people is : "); Put(P_People.all);
New_Li ne;
End Mai n;
Note: Inthe declaration of P_i nt eger , accessall signifies that read and write access may be made to the

object viaits access value.

which when run, would produce:

The nunber of people is : 24

The ideas described above have their origins in low-level assembly language programming where the address
of an item may be freely taken and manipulated. Ada provides a more disciplined way of implementing these
concepts.

15.1.2 Lvalues and rvalues

In working with access values it is convenient to think about the Ivalue and rvalue of an object. The Ivalue is the
access val ue of the object, whilst the rvalue is the contents of the object. For example, in the statement:

val ue : = anobunt;

the object anmobunt will deliver its contents, whilst the object val ue will deliver its access value so that the
rvalue of anbunt may be assigned to it. The names Ivalue and rvalue are an indication of whether the object is
on the left or the right-hand side of an assignment statement.

O M A Smith - May not be reproduced without permission

Dynamic memory allocation 211

In a program it is usual to deal with the contents or rvalue of an object. The access value of an object is its
Ivalue. For example, after the following fragment of code has been executed:

decl are
type P_Integer is access all Integer;
type P_P_Integer is access all P_Integer;
P_P_People : P_P_Integer;

P_Peopl e . aliased P_Integer;

Peopl e . aliased Integer;
begi n

Peopl e = 42;

P_Peopl e = Peopl e' Access;

P_P_Peopl e : = P_Peopl e' Access;

end;

the following expressions will deliver the contents of the object peopl e:

Expression Diagram
Peopl e Peopl e
24
P_Peopl e. al | P_Peopl e Peopl e
—F—» 24
P_P_People.all.all P_P_People P_People Peopl e
i . B s, B2

In asimilar way the following statements will assign 42 to the object peopl e.

Statement Explanation

Peopl e : = 42; Straight-forward assignment.
P_People.all := 42; Single level of indirection.
P_P _People.all.all := 42; Double level of indirection.

15.1.3 Read only access

Access to an object via an access value may be restricted to read only by replacing al | with const ant inthe

declaration of the access type. For example, in the following fragment of code, only read access is allowed to
Peopl e when using the access value held inP_Peopl e.

decl are
type P_Integer is access constant |nteger;
Peopl e : aliased Integer;
P_People : P_lnteger;
begi n
Peopl e 24;
P_Peopl e : = Peopl e' Access; --Access val ue for people
Put (" The nunber of people is : "); Put(P_People.all);
New_Li ne;
end;

O M A Smith - May not be reproduced without permission

212 Polymorphism
15.2 Dynamic allocation of storage

The process described so far has simply used existing storage; the real power of access values accrue when
storage is claimed dynamically from a storage pool. In Ada terminology an allocator is used to allocate storage
dynamically from a storage pool. For example, storage can be allocated dynamically by using the allocator new as

follows:
decl are
Max_Chs : constant := 7;
type Gender is (Female, Male);
type Height _Cmis range 0 .. 300;
type Person is record
Name : String(1 .. Max_Chs); --Nanme as a String
Hei ght : Height_Cm:= 0; --Height in cm
Sex . Gender; --CGender of person
end record;
type P_Person i s access Person; --Access type
P Mke : P_Person;
begi n
P_M ke := new Person' ("M ke ", 183, Male);

end;

Note: Asthe storage for aPer son is always allocated dynamically from a specific storage pool, an access
type that declares an object to hold an access value of aPer son may be declared without the keyword
al | orconstant.

The expression:

new Person' ("M ke ", 183, Male);

returns the access value to dynamically allocated storage for a person initialized with the values given in the
record aggregate. This could also have been written as:

new Person;
Person' ("M ke ", 183, Male);

=k
ino

O M A Smith - May not be reproduced without permission

Dynamic memory allocation 213

One way of managing dynamically allocated storage is to form a daisy chain of the allocated storage. The
usual approach when implementing this technique is to include with the record component a value which can hold
the access value of the next item in the daisy chain. The end of the chain is indicated by the value nul | . The
vauenul | isspecia asit isconsidered the null value for any access type. The Ada system will guarantee that no
allocated access value can ever havethevaluenul | .

The code below forms a daisy chain of two items of storage which represent individual people.

decl are
Max_Chs : constant := 7;
type Gender is (Fenale, Male);
type Height _Cmis range 0 .. 300;
type Person; --Inconpl ete declaration
type P_Person i s access Person; --Access type
type Person is record
Name : String(1 .. Max_Chs); --Nanme as a String
Hei ght : Height_Cm:= 0; --Height in cm
Sex . CGender; --Gender of person
Next . P_Person;
end record;
Peopl e : P_Person;
begi n
Peopl e : = new Person' ("M ke ", 183, Male, null);
Peopl e. Next := new Person' ("Corinna", 171, Female, null);
end;
Note: P_Per son and Per son are mutually dependent upon each other as both contain a reference to each

other. To fitin with the rule that all items must be declared before they can be used, Ada introduces the
concept of a tentative declaration. This is used when Per son is defined as't ype Person;' . The
full declaration of per son is defined a few lines further down.

Theresultant data structureisillustrated in Figure 15.3.

People

\l Mike 183 vale | -

Corinna 171 Female |null

Figure 15.3 Daisy chain of two people.

In the above code the daisy chain of people could have been created with the single assignment statement:

Peopl e : = new Person' ("M ke ", 183, Ml e,
new Person' ("Corinna", 171, Female, null));

O M A Smith - May not be reproduced without permission

214 Polymorphism

An iterative procedure to print the names of people represented in thischainis:

procedure Put(Crowd: in P_Person) is
Cur : P_Person := Crowd;
begi n
while Cur /= null |oop
Put (Cur.Name); Put(" is ");
Put (I nteger(Cur.Height), Wdth=>3); Put("cmand is ");
i f Cur.Sex = Femal e then
Put ("fenal e");
el se
Put (" mal e");
end if;
New_Li ne;
Cur := Cur. Next;
end | oop;
end Put;

whilst arecursive version of the above procedureiswritten as::

procedure Put(Cur: in P_Person) is
begi n
if Cur /= null then
Put (Cur.Nanme); Put(" is ");
Put (I nteger(Cur.Height), Wdth=>3); Put("cmand is ");
i f Cur.Sex = Femal e then
Put ("fenal e") ;
el se
Put (" mal e");
end if;
New_Li ne;
Put (Cur. Next);
end if;
end Put;

When executed:

decl are
-- Declarations omtted for brevity
Peopl e : P_Person;
begi n
Peopl e : = new Person' ("M ke ", 183, Male,
new Person' ("Corinna", 171, Female, null));
Put (People);
end;

with either of the above proceduresPut the code would produce the following results:

M ke is 183cmand is nmale
Corinna is 171cmand is fenal e

when called to print peopl e.

O M A Smith - May not be reproduced without permission

Dynamic memory allocation 215

15.2.1 Problemswith dynamically allocated storage

The use of dynamically allocated storage can result in errors which can be difficult to track down in a program.
Some of the potential problems associated with dynamic storage allocation are tabled below:

Problem Result

Memory leak The storage that is allocated is not always returned to the
system. For a program which executes for along time,
this can result in eventual out of memory error messages.

Accidentally using the same Thiswill result in corrupt datain the program and
storage twice for different data probably a crash which isdifficult to understand.
items.

Corruption of the chained data Most likely a program crash will occur some time after
structure holding the data. the corruption of the data structure.

Time taken to allocate and de- There may be unpredictable delaysin areal-time system.
alocate storage is not always However, aworst case Figure can usually be calculated.
constant.

15.3 Returning dynamically allocated storage

In Adathere are two processes used for returning dynamically allocated storage to the system. These are:

° The Adarun-time system implicitly returns storage once the type that was used to elaborate the storage
goes out of scope.

° The programmer explicitly calls the storage manager to release dynamically allocated storage which
is no longer active. This returned storage is then immediately available for further allocation in the
program.

The advantages and disadvantages of the two processes described above are as follows:

Process Advantages Disadvantages

Storage reclamation | No problem about de- May result in aprogram
implicitly managed | allocating active storage. consuming large amounts of
by the system. storage even though its

actual use of storageis
small. In extreme cases this
may prevent a program from
continuing to run.

Storage de- Preventsinactive storage If the programmer makes an
alocation explicitly | consuming program address | error in the de-allocation
initiated by a space. then this may be very
programmer. difficult to track down.

Note: The process of explicitly returning storage to the run-time systemis described in Section 15.4.
As storage de-all ocation can be an error-prone process, the best strategies are to either:

) L et the Adarun-time system do the de-all ocation automatically for you.

) Hide allocation and de-allocation of storagein aclass. The methods of the class can then betested in
isolation. The fully tested class can then be incorporated into a program.

O M A Smith - May not be reproduced without permission

216 Polymorphism

15.3.1 Summary: access al | ,access constant,access

The following table summarizes the choice and restrictions that apply to the use of access values.

Note Declaration (T isan | nt eger type) Example of use

1 type P_.T is access all T; a ot ;= a t'Access;
at : aliased T; apt.all :=2;
a_pt: P_T;

2 type P_.T Is access constant T, a pt 1= a t' Access;
at : aliased constant T := 0; Put(a_pt.all);
apt: P_T;

3 type P T is access T; a pt = new T;
apt: PT, apt.all := 2;

Note 1: Used when it is required to have both read and write access to a_t using the access value held in
a_pt . Thestorage described by a_t may also be dynamically created using an allocator.

Note 2: Used when it isrequired to have only read accessto a_t using the access value held in a_pt . The
storage described by a_t may also be dynamically created using an allocator.

Note 3: Used when the storage for an instance of aT is allocated dynamically. Access to an instance of T can

beread or written to using the access value obtained fromnew.

This form may only be used when an access value is created with an allocator (new T).

15.4 Use of dynamic storage

The St ack package shown in Section 14.3 could be rewritten using dynamic storage allocation. In rewriting this
package, the user interface to the package has not been changed. Thus, a user of this package would not need to

modify their program.

There is however, one important difference and this is that as the implementation of the stack uses linked
storage as the implementation stands it cannot be correctly copied. To prevent a user of the package from
attempting to copy an instance of astack thetype St ack iscreatedasal i m t ed type.

generic
type Stack_El enent is private; - -

package C ass_Stack i s
type Stack is limted private; --NO copyi ng
Stack_Error : exception;

procedure Push(The:in out Stack; lItemin Stack_El enent);
procedure Pop(The:in out Stack; Item:out Stack_El enent);
procedure Reset(The:in out Stack);

private
type Node; --Miutual Iy recursive def
type P_Node is access Node; --Pointer to a Node
pragma Control |l ed(P_Node); --We do deal | ocation
type Node is record --Node holds the data
Item : Stack_El enent; --The stored item
P_Next : P_Node; --Next in Iist

end record;

type Stack is record
P_Head : P_Node := null; --First node in list
end record;
end d ass_St ack;

Note: The compiler directive pragna Controll ed(P_Node) to inform the compiler that the
programmer will explicitly perform the storage de-allocation for data allocated with thetype P_Node.

O M A Smith - May not be reproduced without permission

Dynamic memory allocation 217

The package body isasfollows:

wi th Unchecked _Deal | ocati on;
pragne El aborate_Al |l (Unchecked_Deal | ocation);
package body Cl ass_Stack is

procedure Dispose is
new Unchecked_Deal | ocati on(Node, P_Node);

The procedure Di spose is an instantiation of the generic package Unchecked_Deal | ocati on that
returns space back to the heap. The parameters to the generic package Unchecked_Deal | ocat i on are of two
types: firstly, the type of the object to be disposed, and secondly, the access type for this object.

Note: This procedure doesllittle error checking. It isimportant not to dispose of storage which is still active.

The empty list is represented by the p_head containing the nul | pointer. The nul | pointer is used to
indicate that currently the object P_Head does not point to any storage. This can beimagined as Figure 15.4.

PR]

Figure 15.4 A location containing thenul | accessvalueor pointer.

When an item (in thiscase an| nt eger) has been added to the stack it will look like Figure 15.5.

P_Head ™
| 3 [e |

Val ue P_Next
Figure 15.5 A stack containing one element.
To access the componentval ue the. operator is used.

Note: The compiler will generate the appropriate code to reference val ue. In this case it will involve a de-
referencing through the pointer held inP_Head.

P_Head.ltem = 3;

The function Push creates a new element and chains this into alinked list of elements which hold the items
pushed onto the stack.

The chain of elements after adding 3and | The chain of elements after pushing 1 on
2toaninstance of anl nt eger Stack |toaninstanceof anl nt eger St ack

P_Head . P_Headl] ’I 1 ,l/ I

O M A Smith - May not be reproduced without permission

218 Polymorphism

procedure Push(The:in out Stack; Itemin Stack _Element) is
Tnp : P_Node; --Al |l ocat ed node

begi n
Tnp : = new Node' (Item=>ltem P_Next=>The. P_Head);
The. P_Head : = Tnp;

end Push;

Pop extracts the top item from the stack, and then rel eases the storage for this element back to the system.

The chain of elements after adding 3 and | The chain of elements after popping the
2 to aninstance of the St ack top element

P _Head . P_Head _ Tmp

procedure Pop(The:in out Stack; Item:out Stack _Element) is
Tnp : P_Node; --Free node
begi n
if The.P_Head /= null then --if itemthen
Tnp : = The. P_Head; --isolate top node
Item: = The. P_Head. | tem --extract item stored
The. P_Head : = The. P_Head. P_Next; --Rel i nk
Di spose(Tnp); --return storage
el se
rai se Stack Error; --Failure
end if;
end Pop;

The procedure r eset pops all existing elements from the stack. Remember the procedure pop releases the

storage for the held item.

procedure Reset(The:in out Stack) is
Tnp : Stack_El enent;

begi n
while The.P_Head /= null | oop --Re-initialize stack
Pop(The, Tnp);
end | oop;
end Reset ;

end d ass_St ack;

O M A Smith - May not be reproduced without permission

Dynamic memory allocation 219

15.4.1 Putting it all together

The following code tests the implementation of the previously compiled Cl ass_St ack. Firstlly an instance of
an| nt eger stack isinstantiated.

with d ass_Stack;
pragnma El aborate Al (C ass_Stack);
package Cl ass_Stack_Int is new C ass_Stack(Ilnteger);

Then this package, is used in the following program that tests the stack implementation.

with Ada. Text |l o, Ada.lnteger_Text lo, Cass_Stack_Int;
use Ada.Text_lo, Ada.lnteger_Text_lo, Cass_Stack_Int;
procedure Main is

Nunber _Stack : Stack; --Stack of nunbers
Action . Character; --Action
Nunber . Integer; --Nurmber processed
begi n
Reset (Nunber _Stack); --Reset stack to enpty

while not End_O _File | oop
whil e not End_Of _Line |oop
begi n
Get(Action);
case Action is --Process action
when '+ =>
Get (Number); Push(Nunmber _Stack, Nunber) ;
Put ("push nunmber = "); Put(Number); New_Line;

when '-' =>
Pop(Nunmber _St ack, Nunber) ;
Put ("Pop nunber = "); Put(Nunber); New_Line;

when ot hers =>
Put("Invalid action"); New_Line;
end case;
exception

when Stack_Error =>
Put ("Stack_error"); New_Line;
when Data Error =>
Put ("Not a nunber"); New_Li ne;
when End_Error =>
Put (" Unexpected end of file"); New Line; exit;
end;
end | oop;
Ski p_Li ne;
end | oop;

Reset (Number _Stack);
end Mai n;

When run with the data:

+1+2+3+4- - - - -

O M A Smith - May not be reproduced without permission

220

Polymor phism

this program will produce the following results:

push nunber
push nunber
push nunber
push nunber
Pop numnber
Pop nunber
Pop nunber
Pop numnber
Pop: Exception Stack_error

A WN R

4
3
2

|
[EEY

This is essentially the same driver code as used on the previous implementation of a stack. This time,
however, the stack is using dynamically allocated storage.

15.5Hiding the structur e of an object (opaque type)

So far, even though a client of a class cannot access the instance attributes of an instance of the classthe client can
till see the type and names of the instance attributes used in the object in the specification of the class. The
instance attributes in an object can be hidden by moving the data declarations to the implementation part of the
class. The specification part of the class will nhow contain an access value to a data structure whose contents are
defined in the implementation part of the class.

If the specification part of the class no longer defines how much storage is to be used then the storage for an
object must be allocated dynamically. The reason for thisis that the compiler will not know how much storage to
alocate for an object. Remember that the implementation part may have been separately compiled. The
specification part of the class defines an access value which points to the storage for the object’s instance
attributes. For example, the class for a bank account can now be defined as:

wi th Ada. Fi nal i zati on;
use Ada. Finalization;
package Cl ass_Account is
type Account is new Limted_Controlled with private;
subtype Money is Float;
subtype Pnoney is Float range 0.0 .. Float'Last;
procedure Initialize(The:in out Account);
procedure Finalize (The:in out Account);
procedure Deposit (The:in out Account; Amount:in Proney);
procedure Wthdraw (The:in out Account; Amount:in Proney;
Cet :out Pnoney);
function Balance (The:in Account) return Mney;

private
type Actual _Account; --Details In body
type P_Actual _Account is access all Actual _Account;
type Account is new Limted_Controlled with record
Acc : P_Actual _Account; --Hi dden in body
end record;
end Cl ass_Account;

Note: Apart from the user-defined initialization and finalization, the procedure and function specification is
the same as seen in Section 6.3.4.
The declaration for thetype Act ual _Account istentative.
The base type of the classis Li m t ed_Cont r ol | ed. Thus assignments of instances of Account
are prevented..

O M A Smith - May not be reproduced without permission

Dynamic memory allocation 221

A benifit of the approach taken above is that a client of the class only needs to relink with any new
implementation code even though the implementor of the class has changed the datain the object.
The implementation of the revised classAccount isasfollows:

wi th Unchecked Deal | ocati on;
package body d ass_Account is

pragma Control |l ed(P_Actual Account); -- W do deallocation
type Actual _Account is record --Hi dden decl aration

Bal ance_OF : Money := 0.00; --Anpunt i n account
end record;

Thecodefor | ni ti al i ze alocates the storage for the object automatically when an instance of the classis
created. Thebody of fi nal i ze releases the storage when the object goes out of scope.

procedure Dispose is
new Unchecked_Deal | ocati on(Actual _Account, P_Actual _Account);

procedure Initialize(The:in out Account) is
begi n

The. Acc : = new Actual Account; --All ocate storage
end Initialize;

procedure Finalize (The:in out Account) is

begi n
if The.Acc /= null then --Rel ease storage
Di spose(The. Acc); The.Acc:= null; --Note can be called
end if; -- nore than once

end Finali ze;

The code for Deposi t ,W t hdr aw and Bal ance are similar to the previousimplementation of Account .

procedure Deposit (The:in out Account; Amount:in Pnoney) is
begi n

The. Acc. Bal ance_Of := The. Acc. Bal ance_OF + Anpunt ;
end Deposit;

procedure Wthdraw(The:in out Account; Amount:in Proney;
Get: out Pnoney) is
begi n
if The. Acc. Bal ance_ O >= Anpunt then
The. Acc. Bal ance_Of : = The. Acc. Bal ance_Of - Anount;
Get := Amount;
el se
Get := 0.00;
end if;
end Wt hdraw,

function Balance(The:in Account) return Money is
begi n
return The. Acc. Bal ance_f;
end Bal ance;

end C ass_Account;

Note: The automatic de-referencing of The.

O M A Smith - May not be reproduced without permission

222 Polymorphism

15.5.1 Putting it all together

The revised version of the class Account can be used in the same way as previously. In this program, the
procedure St at ement seen earlier in Section 6.3.2 is used to print details about an individual account.

with Ada. Text _lo, C ass_Account, Statenent;
use Ada.Text _lo, Cass_Account;
procedure Main is
My_Account : Account ;
bt ai n : Money;
begi n
St at ement (My_Account);

Put (" Deposit £100.00 into account"); New_Li ne;
Deposit (My_Account, 100.00);
Statement (My_Account);

Put ("W thdraw £80.00 from account"); New_Li ne;
Wthdrawm(My_Account, 80.00, Obtain);
St at ement (My_Account);

Put (" Deposit £200.00 into account"); New_Li ne;
Deposit (My_Account, 200.00);

St at ement (My_Account);
end Main;

which when run, would produce:

M ni statenent: The ampunt on deposit is £ 0.00

Deposit _100.00 i nto account
M ni statenment: The ampunt on deposit is £100.00

W thdraw _80.00 from account
M ni statenent: The amount on deposit is £20.00

Deposit _200.00 into account
M ni statenent: The amount on deposit is £220.00

Note: Theclass Account allows the assignment of an instance of an Account . The consequences of this
are that two objects will share the same storage. Section 17.4 exploresand discusses thisin detail and
shows a solution to the problem.

O M A Smith - May not be reproduced without permission

Dynamic memory allocation 223
15.5.2 Hidden vs. visible storage in a class

The main benefit of this approach is that a client of the class does not need to recompile their code when the
storage structure of the class is changed. The client code only needs to be relinked with the new implementation
code. This would usually occur when a new improved class library is provided by a software supplier. Naturally,
this assumes that the interface with the library stays the same.

The pros and cons of the two approaches are:

Criteria Hidden storage Visible storage
Compilation efficiency Fewer resources required, [Greater as all units that use
as only a recompile of the | the class need to be
class and then a re-link | recompiled.

need to be performed.
Run-time efficiency Worse as there is the|No extra run-time
dynamic storage allocation | overhead.
overhead.
Client access to data| None None
components of an object.
Note: The extra cost of re-compiling and re-linking all units of a program may be marginal when compared

with just re-linking.

15.6 Access value of a function

The access value of afunction or procedure may also be taken. This allows afunction or procedure to be passed as
aparameter to another function or procedure. For example, the procedure appl y applies the function passed as a

parameter to all elements of the array. The implementation of this function is shown in the fragment of code
below:

type P_Fun is access function(ltemin Float) return Float;
type Vector is array (Integer range <>) of Float;

procedure Apply(F:in P_Fun; To:in out Vector) is
begi n
for I in To'range |oop
To(l) := F(To(l));
end | oop;
end Apply;

Note: The de-referencing is done automatically when the function f is called. This could have been done
explicitty with F. al | (To(1)). This explicit de-referencing is, however, required if the called
function or procedure has no parameters.

Thefirst parameter to the procedure appl y can be any function which has the signature:
function(ltemin Float) return Float;
Two such functions are:

function Square(F:in Float) return Float is
begi n

return F * F;
end Squar e;

function Cube(F:in Float) return Float is
begi n

return F* F * F
end Cube;

O M A Smith - May not be reproduced without permission

224 Polymorphism
15.6.1 Putting it all together

Using the above declarations the following program can be written:

with Ada. Text | o, Ada.Float_Text _Ilo;

use Ada. Text_lo, Ada.Float_Text _|o;

procedure Main is

type P_Fun is access function(ltemin Float) return Float;
type Vector is array (Integer range <>) of Float;

-- Body of the procedures apply, square and fl oat

procedure Put(Itens:in Vector) is

begi n
for I in Itens' Range | oop
Put(Items(l), Fore=>4, Exp=>0, Aft=>2); Put(" ");
end | oop;
end Put;
begi n

Nunmbers := (1.0, 2.0, 3.0, 4.0, 5.0);
Put ("Square list :");
Appl y(Square' access, Numbers);
Put (Nunmbers); New_Li ne;
Nunmbers := (1.0, 2.0, 3.0, 4.0, 5.0);
Put ("cube 1i st ")
Appl y(Cube' access, Nunbers);
Put (Nunmbers); New_Li ne;
end Ex2;

which when run, will produce the following results:

Square list : 1.00 4.00 9. 00 16. 00 25.00
cube |i st : 1.00 8. 00 27.00 64. 00 125.00
Note: A programis not allowed to take the address of a predefined operator such as St andar d. " +". This

isto ease compiler implementation.

O M A Smith - May not be reproduced without permission

Dynamic memory allocation 225

15.7 Attributes' Access and '‘Unchecked Access

The access value of an object may only be taken if the object is declared at the same lexical level or lower than the
type declaration for the access value. If it is not, then a compile time error message will be generated when an
attempt is made to take the object’s access value. Thisis to prevent the possibility of holding an access value for
an object which does not exist. For example, in the following program:

procedure Main is
Max_Chs : constant := 7;
type Height_Cmis range 0 .. 300;
type Person is record
Name : String(1 .. Max_Chs); --Nanme as a String
Hei ght : Height_Cm:= 0; --Height in cm
end record;
M ke . aliased Person := Person' ("M ke ",156);
begi n
decl are
type P_Person is access all Person; --Access type
P_Human: P_Person,;
begi n
P_Human: = M ke' access; --K
decl are
Clive : aliased Person := Person'("Clive ", 160);
begin
P_Human := dive' Access;
end;
Put (P_Human. Name); New_Li ne; --Clive no | oner exists
P_Human : = M ke' access; --Change to M ke
end,
end Mai n;
acompile time error message is generated for the line:
P_Hurman := dive' Access; -- Conpile tinme error

asthe object Cl i ve doesnot exist for all the scope of thetype P_Per son. In fact, there is a serious error in the
program, as when theline:

Put (P_Hurman. Name); New_Li ne; -- Cive no longer exists

is executed, the storage that p_hunman points to does not exist. Remember the scope of cl i ve isthe decl ar e
block.

In some circumstances the access value of an object declared in an inner block to the access type declaration is
required. If this is so, then the compiler checking can be subverted or overridden by the use of
" Unchecked_Access. Thus, the following code can be written:

procedure Main is
-- Declaration of Person, P_Person, Mke etc.
begi n
P_Human: = M ke' Access; -- K
decl are
Clive : aliased Person := Person' ("Clive ", 160);
begin
P Human : = dive' Unchecked_ Access;
Put (P_Human. Nane); New_Li ne; -- Clive
end;
P_Human: = M ke' Access; -- Change to M ke
Put (P_Hurman. Nane); New_Li ne; -- Mke
end Mai n;

Of course the compiler can no longer help the programmer in detecting possible inconstancies.

O M A Smith - May not be reproduced without permission

226 Polymorphism

15.8 Salf-assessment

What is an access type? What is an access value?

How is dynamic storage allocated?

What mechanisms are available to return dynamically allocated storage?

Why is dynamic storage allocation often considered a potential problem areain a program?
How do you pass a procedure as a parameter to another procedure?

Why isit essential to be ableto call the procedure Fi nal i ze inthe classAccount morethan once
on the same object?

What isthe difference between' Access and' Unchecked_ Access?

15.9 Exercises

Construct the following:

Store
A store for dataitems which has asits generic parameters the type of the item stored and the type of the
index used. The generic specification of the classis:

generic
type Store_index is private; --
type Store_elenent is private; --
package C ass_store is
type Store is limted private; -- NO copyi ng
Not there, Full : exception;

pr ocedure add (the:in out Store;
i ndex: in Store_index;
itemin Store_el enent);
function deliver(the:in Store;
index:in Store_index)
return Store_el enent;
private

end d ass_store;

The implementation of the store uses alinked structure.

Queue

The class Queue implements a data structure in which items are added to the rear of the queue and
extracted from the front. Implement this generic class using dynamic storage allocation.

O M A Smith - May not be reproduced without permission

16 Polymorphism

In the processes described so far, when a message is sent to an object, the method executed has been
determinable at compile-time. Thisisreferred to as static binding. If the type of an object that a message
is sent to is not known until run-time, the binding between the method and the message is dynamic.
Dynamic binding leads to polymorphism, which is when a message sent to an object causes the execution
of amethod that is dependent on the type of the object.

16.1 Roomsin a building

A partia classification of the different types of accommodation found in an office building is shown in Figure

16.1.
Store Room /

Office

Executive
Office

Figure 16.1 Partial classification of types of accommodation in abuilding.

The type of accommodation in each part of the building can be modelled using the Ada inheritance
mechanism. First, a classRoomto describe a general room is created. This class is then used as the base class for
a series of derived classes that represent more specialized types of room. For example, an executive office is a
more luxurious office, perhaps with wall-to-wall carpets and an outside view.

Each class derived from the class Room including Room, has a function descri be which returns a
description of the accommodation.

A program is ableto send the message descr i be to an instance of any type of accommodation and have the
appropriate code executed. Thisis accomplished with function name overloading.

Figure 16.2 illustrates the call of afunctiondescri be onani nst ance of aclassderived from Room

wiDescri be

Executive
Ofice

Figure 16.2 Call of descr i be on any instance of an object derived from Room

O M A Smith - May not be reproduced without permission

228 Polymorphism
16.1.1 Dynamic binding

Ada introduces the concept of a class-wide type to describe a tagged type and any type derived from the tagged
type. The class-wide type is treated as an unconstrained type and iswritten T' Cl ass, where T is a tagged type.

For example, using the above hierarchy of types:

Classwidetype Can describe an instance of the following types
Room Cl ass Room O fice,Executive O fice
or St ore_Room
O fice C ass O ficeorExecutive Ofice
Executive O fice' Class |Executive Ofice
St ore_Room Cl ass St ore_Room
Note: Thisis a departure from Ada’s normal strict type checking, as any derived type of T can be implicitly

convertedtoT' Cl ass.
Aclass-widetype T' Cl ass i s considered to be an unconstrained type which must be initialized and

isthen only allowed to hold instances of the initialization type.

When a message such as descr i be is sent to an object of the class-wide type Rooni Cl ass the compiler
does not know at compile-time which method to execute. The decision as to which method to execute must be
determined at run-time by inspecting the object’s tag. An object’s tag describes its type. The mechanism of
dynamic binding between an object and the message sent to it is referred to in Ada terminology as a run-time
dispatch.

The object’ stag can be explicitly examined using the attribute ‘'Tag. For example:

if WI22' Tag = WI14' Tag t hen
Put ("Areas are the sane type of accommodation");
New_Li ne;

end if;

16.2 A program to maintain details about a building

A program that maintains details about a building stores individual details about rooms and offices. The details
stored about a room include a description of its location. For an office, the details stored are all those for a room,
plus the number of people who will occupy the room. The program will be required to give details about the
individual areasin the building that may be aroom or an office.

Theresponsibilities of aRoomare as follows:

M ethod Responsibility

Initialize Store a description of the room.

Descri be Deliver astring containing a description of the room.
Wher e Deliver the room’s number.

O M A Smith - May not be reproduced without permission

Polymorphism 229

This can be implemented as an Ada class specification asfollows:

with B_String; use B_String;
package C ass_Roomis
type Room is tagged private;

procedure Initialize(The:in out Room No:in Positive;
Mes:in String);

function Where(The:in Room) return Positive;

function Describe(The:in Room) return String;

private
type Room is tagged record
Desc : Bounded_Stri ng; --Description of room
Nunber: Positive; - - Room nunber

end record;
end d ass_Room

Note: The package B_st r i ng isan instantiation of the package Ada. St ri ngs. Bounded. For example:

with Ada. Stri ngs. Bounded;
use Ada. Strings. Bounded,;
package B _String is new Generic_Bounded_Length(80);

Theimplementation of the classis:

with Ada. |l nteger_Text _|o;
use Ada.lnteger_Text _|o;
package body C ass_Roomis

procedure Initialize(The:in out Room
No:in Positive; Mes:in String) is
begi n
The. Desc : = To_Bounded_String(Mes);
The. Nunber : = No;
end Initialize;

function Where(The:in Room) return Positive is

begi n
return The. Nunber ;
end Where;
function Describe(The:in Room) return String is
Num: String(1 .. 4); --Room nunber as string
begi n
Put (Num The. Nunber);
return Numé& " " & To_String(The. Desc);
end Descri be;

end C ass_Room

Theresponsibilitiesof anCf f i ce are those of the Roomplus:

M ethod Responsibility

Initialize Store a description of the office plus the number of
occupants.

Descri be Returnsa St r i ng describing an office.

No_OF Peopl e Return the number of people who occupy the room.

O M A Smith - May not be reproduced without permission

230 Polymorphism

The specification for aclassOf f i ce extends the specification for aclassRoomas follows:

with Cass_Room use d ass_Room
package Class_Ofice is
type Ofice is new Room with private;

procedure Initialize(The:in out Ofice; No:in Positive;

Desc:in String; People:in Natural);
function Deliver_No_O _People(The:in Ofice) return Natural;
function Describe(The:in Ofice) return String;

private
type Ofice is new Roomwith record
People : Natural := 0; --Cccupant s
end record;

end Cass Ofice;

In the implementation of the class Of f i ce the procedure | niti al i ze calls the inherited I niti alize
from class Roomto store the description of the office. Remember the storage for the description in class Roomis
inaccessibleto theclassOf f i ce.

with Ada. | nteger_Text _|o;
use Ada.lnteger_Text _|o;
package body Class_Ofice is

procedure Initialize(The:in out Ofice; No:in Positive;
Desc:in String; People:in Natural) is
begi n
Initialize(The, No, Desc);
The. Peopl e : = Peopl €;
end Initialize;

The functionDel i ver _No_Of _Peopl e returns the number of people who occupy the office.

function Deliver_No_O _People(The:in Ofice) return Natural is
begi n

return The. Peopl e;
end Del i ver_No_OF _Peopl e;

The function descri be is overloaded with a new meaning. In the implementation of the method
Descri be, acall is made to the method Descr i be in the class Room To call the function Descri be in the
class Room the function is passed an instance of Of fi ce viewed asa Room This is referred to as a view
conversion — the view changes, not the object. If this had not been done, a recursive call to descri be in the
classOf f i ce would have been made.

function Describe(The:in Ofice) return Stringis
No : String(1 .. 4); --the. people as string
begi n
Put (No, The. People);
return Describe(Room(The)) &
" occupied by" & No & " people";
end Descri be;

end dass_Ofice;

O M A Smith - May not be reproduced without permission

Polymorphism 231
16.2.1 Putting it all together

The above classes can be combined into a program which prints details about various rooms or offices in a
building. The program is as follows:

with Ada. Text _lo, Class_room Cass_Ofice;
use Ada.Text lo, Cass_room Cass Ofice;
procedure Main is

W22 . Room

W14 : Ofice;

The procedure about can take either an instance of a Roomor an Of f i ce as a parameter. Thisis achieved
by describing the parameter as RooniCl ass. The parameter of type Room Cl ass will match an instance of
Roomplus an instance of any type which is derived directly or indirectly from aRoom

In the procedure about the call to the function Descri be(Pl ace) isnot resolvable at compile-time, as
the object pl ace may be either a Roomor an Of f i ce. At run-time when the type of Pl ace is known to the
system, this call can be resolved. Thus, either Descr i be in the class Roomor Descri be intheclassOf fi ce

will be called.
procedure About(Place:in RoomCass) is
begi n
Put ("The place is"); New_Line;
Put(" " & Describe(Place)) ; --Run tine dispatch
New_Li ne;
end About ;
Note: One way to implement the dynamic binding is for the object to contain information about which

function Descr i be isto be called. Thisinformation can then be interrogated at run-time to allow the
appropriate version of the function Descr i be to be executed. By careful optimization, the overhead
of dynamic binding can be limited to a few machine cycles.

The body of the test program Mai n is:

begi n
Initialize(Wil4, 414, "4th Floor west wing", 2);
Initialize(W22, 422, "4th Floor east wi ng");

About (W22); --Call with a room
About (W14); --Call with an Ofice
end Mai n;
Note: The call to about with an instance of a Roomand an Of f i ce is possible because the type of the

formal parameter isRooni Cl ass.

O M A Smith - May not be reproduced without permission

232

Polymor phism

When run, this program will produce the following output:

The place is
422 4th Fl oor east wi ng
The place is
414 4th Fl oor west wi ng occupi ed by 2 peopl e

16.3 Run-time dispatch

For run-time dispatching to take place:

) The function or procedure must have atagged type as aformal parameter.
) In the call of the function or procedure the actual parameter corresponding to the tagged type must be
an instance of a class-widetype.

For example, the call to the functiondescri be(pl ace) inthe procedure about will be adispatching call.

If the actual class-wide type can represent two or more different typed objects which have procedures or
functions with the same parameters, except the parameter for the class type, then polymorphism can take place.
For example, in class Roomand class Of f i ce, the function descr i be has the same signature except for the
parameter with the classtype.

In classRoom function Describe(The:in Room return String;
InclassOf fice |function Describe(The:in Ofice) return String;

The signatures of the functions and proceduresin the classRoomand the classCOf f i ce are:

In classRoom InclassOf fi ce

Initialize(Room String) Initialize(Ofice, String)

Descri be(Room) -> String Descri be(Office) -> String

No OF Peopl e(Roonm) -> | nteger
Initialize(Ofice,String, Natural)

Note: The functioninitialize(Ofice, String) inclassOf fi ce isinherited fromthe class Room

16.4 Heter ogeneous collections of objects

The real benefits of polymorphism accrue when a heterogeneous collection of related items is created. For
example, a program which maintains detail s about accommodation in a building could use an array to hold objects
which represent the different types of accommodation. Unfortunately, this technique cannot be implemented
directly in Ada, as the size of individual members of the collection may vary. The solution in Adais to use an
array of pointers to the different kinds of object which represent the accommodation. In Ada, a pointer is referred
to as an access value. An access value is usually implemented as the physical address in memory of the referenced
object. An array of access values to objects of type Roomand Of f i ce isillustrated in Figure 16.3.

O M A Smith - May not be reproduced without permission

Polymorphism 233

Figure 16.3 Heterogeneous collection of Roons and O f i ces.

300;04

3 00 ng

3 0 0 ng
(DO——“—“O<

ﬂ:o—'—h—ho<

®0 =™ "0.¢

® 0T O g
mo—'—h—ho<

16.4.1 An array as a heter ogeneous collection

A heterogeneous collection of different types of accommodation can be modelled in an array. The array will
contain for each type of accommodation a pointer to either an instance of a Roomor an instance of an Of f i ce.
For example:

type P_Room is access all Room d ass;
type Rooms_Array is array (1 .. 15) of P_Room

Note: P_Roomis an access type which can declare an object which can hold the access value for a Roomor
any type derived fromaRoom
The keywordnul | isa predefined value to indicate that the object contains no access value.

The heterogeneous collection isthen built using an array of P_Room The object’s access value is used when
entering a description of the accommodation into the heterogeneous array. For example, to enter details about
room 414 into the heterogeneous array, the following code can be used.

decl are
P . P_Room
Accommpdat i on: Roons_Arr ay;
begi n
P : = new Room
Initialize(P.all, 422, "4th Floor east w ng");
Accomuodation(l) := P;
end;

This inelegant code sequence isrequired as the instance attributes of the class Roomare hidden and hence the
construct:

Accomnmodati on(1) := new Gfice(414, "4th Hoor east wng" ,2);
cannot be used.

16.4.2 AdditionstotheclassOf fi ce and Room

To simplify later code, the classes Roomand Of f i ce are extended to include additional methods to return an
access valueto an initialized object. These additional methods are:

M ethod Responsibility
Bui | d_Room Deliver an access value to a dynamically created Room
Bui l d_Office |Deliveranaccessvaluetoadynamically createdOf fi ce.

O M A Smith - May not be reproduced without permission

234 Polymorphism

A child package is used to implement this extension to the classes. The specification for the child package of
Roomis:

package C ass_RoomBuild is
type P_Roomis access all Room O ass;

function Build_Room(No:in Positive;
Desc:in String) return P_Room
end Cl ass_Room Bui | d;

whilst itsimplementationiis:

package body C ass_RoomBuild is

function Build_Room(No:in Positive;
Desc:in String) return P_Roomi s
P : P_Room
begi n
P := new Room Initialize(P.all, No, Desc);
return P;
end Buil d_Room

end C ass_Room Bui | d;

The specification for the child packageof Of f i ce is:

with Cass Room ass_Room Buil d;
use Class_Room d ass_Room Buil d;
package Class_Ofice.Build is

function Build Ofice(No:in Positive; Desc:in String;
Peopl e:in Natural) return P_Room
end Class_Ofice. Buil d;

The implementation of the packageis:

package body dass Office.Buildis
type P_Ofice is access all Ofice;

function Build Ofice(No:in Positive; Desc:in String;
People:in Natural) return P_Roomi s

P: P Ofice;

begi n
P:=new Ofice; Initialize(P.all, No, Desc, People);
return P.all' access;

end Build_Ofice;

end dass_Ofice.Build;

Note: The functionBui | d_OF f i ce returnsan accessvalueto aRoom

O M A Smith - May not be reproduced without permission

Polymorphism 235
16.5 A building infor mation program

A class Bui | di ng, which is used as a container to store and retrieve details about the accommodation in a
building, has the following responsibilities:

M ethod Responsibility
Add Add adescription of aroom.
About Return a description of a specific room.

The Adaspecification for the classBui | di ng is:

with Cass Room ass_Room Buil d;
use Class_Room d ass_Room Buil d;
package C ass_Building is

type Building is tagged private;

procedure Add(The:in out Building; Desc:in P_Room);
function About(The:in Building; No:in Positive) return String;

private
Max_Roons : constant := 15;
type Roons_I ndex is range 0 .. Max_Roons;
subt ype Roons_Range is Roons_Index range 1 .. Max_Roons;

type Roons_Array is array (Roons_Range) of P_Room

type Building is tagged record

Last : Rooms_Index := 0; --Last slot allocated
Description : Roons_Array; --Roons in building
end record;

end d ass_Bui l di ng;

The procedure Add adds new datato the next available position in the array.

package body Class_Building is

procedure Add(The:in out Building; Desc:in P_Room) is
begi n
if The.Last < Max_Roons then
The. Last := The. Last + 1;

The. Description(The.Last) := Desc;
el se
rai se Constraint_Error;
end if;
end Add;
Note: The exception Constraint_Error israised if thereis no more free spacein the array.

O M A Smith - May not be reproduced without permission

236 Polymorphism

The functionabout usesalinear search to find the selected room number. If the room number does not exist,
the returned string containsthetext” Sorry room not known".

function About(The:in Building; No:in Positive) return String is
begi n
for I in 1 .. The.Last |oop
i f Where(The. Description(l).all) = No then
return Describe(The. Description(l).all);
end if;
end | oop;
return "Sorry room not known";
end About ;
end C ass_Bui |l di ng;

Note: Chapter 17 explores mor e sophisticated container implementations.
The appending of . al | to an access value causes the object described by the access value to be
delivered.

16.5.1 Putting it all together

The classesRoom O f i ce and Bui | di ng can be used to build a program to allow visitorsto a building to find
out details about individual rooms. The program is split into two procedures. The first procedure declares and sets
up details about individual roomsin the building.

with Ada. Text _| o, Ada. | nt eger _Text | o, C ass_Room O ass_Room Bui | d,
Class_Ofice, Class_Ofice.Build, dass_Building;
use Ada. Text _l o, Ada. | nteger_Text_lo, O ass_Room O ass_Room Bui | d,
Class_Ofice, Class_Ofice.Build, dass_Building;
procedure Set _Up(Watts:in out Building) is
begi n
Add(Watts, Build Ofice(414, "4th Floor west wing", 2));
Add(Watts, Build_Room (422, "4th Floor east wing"));
end Set_Up;

The second procedure interrogates the object wat t s to find details about individual rooms.

with Ada. Text _l o, Ada.|nteger_Text _lo, Cass_Building, Set_Up;
use Ada. Text_lo, Ada.lnteger_Text_lo, C ass_Building;
procedure Main is
Watts : Buil di ng; --Watts Building
Room No : Positive; --Queried room
begi n
Set _Up(Watts); - - Popul at e buil di ng
| oop
begin
Put ("I nquiry about room "); - - Ask
exit when End_Of _Fil e;
Get (Room No); Skip_Line; --User response
Put (About (Watts, Room No));
New_Li ne; --Di spl ay answer
exception
when Data_ Error =>
Put (" Pl ease retype the nunber"); --Ask again
New_Li ne; Ski p_Li ne;
end;
end | oop;
end Mai n;
Note: The program does not release the storage for the descriptions of the individual rooms and offices.

O M A Smith - May not be reproduced without permission

Polymorphism 237

An example interaction using the program would be as follows:

I nqui ry about room 414

414 4th Fl oor west w ng occupi ed by 2 peopl e
I nqui ry about room 422

422 4th Fl oor east wing

I nquiry about room 999

Sorry room not known

D

Note: The user’sinput isindicated by bold type.

16.6 Fully qualified names and polymor phism

When using polymorphism and fully qualified names, the base class package name is used to qualify the
polymorphic function or procedure. For example, the classBui | di ng specification could have been written as:

with dass_Room C ass_Room Buil d;
package Class_Building is

type Building is tagged private;
procedure Add(The:in out Building;
Desc:in O ass_Room Bui | d. P_Room) ;
function About(The:in Building; No:in Positive) return String;

private
Max_Rooms : constant := 15;
type Roons_I ndex is range 0 .. Max_Roons;
subt ype Roons_Range is Roons_Index range 1 .. Max_Roons;

type Roons_Array is array (Roonms_Range) of
Cl ass_Room Bui | d. P_Room

type Building is tagged record

Last : Rooms_lndex := 0; --Last slot allocated
Description : Roons_Array; --Roons in building
end record;

end d ass_Bui l di ng;

O M A Smith - May not be reproduced without permission

238 Polymorphism

Whilst the implementation would have been written as:

package body Class_Building is

procedure Add(The:in out Building;
Desc:in C ass_Room Build. P_Room) is
begi n
i f The.Last < Max_Roons then
The. Last : = The. Last + 1;

The. Description(The.Last) := Desc;
el se
rai se Constraint_ Error;
end if;
end Add;
function About(The:in Building; No:in Positive) return String is
begi n
for I in 1 .. The.Last |oop

i f C ass_Room Where(The. Description(l).all) = No then
return C ass_Room Descri be(The. Description(l).all);
end if;
end | oop;
return "Sorry room not known";
end About ;
end C ass_Bui |l di ng;

Note: The call of the functionDescr i be iswritten as:
Cl ass_Room Descri be(The. Description(l).all).

16.7 Program maintenance and polymor phism
To modify the above program so that details about executive offices in the building are also displayed would
involve the following changes:

) The creation of anew derived classExecuti ve_of fi ce.

) The modification of the procedure set _up so that details of the executive offices in the building are
added to the collection objectwat t s.

No other components of the program would need to be changed. In carrying out these modifications, the following
points are evident:

° Changes are localized to specific parts of the program.

) The modifier of the program does not have to understand all the details of the program to carry out
maintenance.

° Maintenance will be easier.

Thus, if a program using polymorphism is carefully designed, there can be considerable cost saving when the
program is maintained/updated.

16.8 Downcasting

Downcasting is the conversion of an instance of a base class to an instance of a derived class. This conversion is

normally impossible as extra information needs to be added to the base type object to allow it to be turned into an

instance of a derived type. However, in a program it is possible to describe the access value of an instance of a
derived type as the access value of the base type. This will usually occur when a heterogeneous collection is

created. The data members of a heterogeneous collection, though consisting of many different types, are each

defined as an access value of the base type of the collection.

O M A Smith - May not be reproduced without permission

Polymorphism 239

The conversion from a base type to a derived type must, of course be possible. For example, the following
code copies the offices in the heterogeneous array accommmodat i on intothearray Of f i ces.

with Ada. Text _I| o, Ada. | nt eger _Text | 0o, G ass_Room C ass_Room Bui l d,
Class_Ofice, Cass_Ofice.Build, Ada.Tags;

use Ada. Text | o, Ada. | nteger_Text |lo, Class_Room Cl ass_Room Build,
Class_Ofice, Cass_Ofice.Build, Ada.Tags;

procedure Main is

Max_Roons : constant := 3;

type Roons_Index is range O .. Max_Roons;

subt ype Roonms_Range is Roons_I|ndex range 1 .. Max_Roons;

type Roons_Array is array (Roons_Range) of P_Room
i

type Ofice_Array is array (Roonms_Range) of O fice;

Accommodati on : Rooms_Array; --Roonms and O fices
Ofices . Ofice_Array; --Ofices only
No_Offices . Roons_| ndex;

begi n

Accommdation(1):=Build _Ofice(414, "4th Fl oor west wi ng", 2);
Accommodat i on(2): =Bui |l d_Room (518, "5th Floor east w ng");
Accommodation(3):=Build_Ofice(403, "4th Floor east w ng", 1);

No_Offices := 0;
for I in Roons_Array' range | oop
if Accommpdation(l).all'Tag = Ofice' Tag then
No_Offices := No_Offices + 1;
O fices(No_Ofices) := Ofice(Accomodation(l).all); --
end if;
end | oop;

Put ("The offices are:"); New_Line;
for I inl1 .. No Ofices |oop
Put (Describe(O fices(l))); New_Line;

end | oop;
end Mai n;
Note: The use of 'Tag to allow the selection of objects of type Of f i ce.

Thiswhen run, will give the following results:

The offices are:
414 4th Fl oor west w ng occupi ed by 2 peopl e
403 4th Fl oor east w ng occupi ed by 1 peopl e

16.8.1 Converting a base classto a derived class

It is possible to convert a base class to aderived class by adding the extra data attributes to an instance of the base
class. However, for this to be performed the programmer must have access to the base class components. The
implication of thisis that the encapsulation of the base class has been broken. In the example below, an instance
of Account isconverted to an instance of anAccount _Lt d.

O M A Smith - May not be reproduced without permission

240 Polymorphism

with Ada. Tags;
use Ada. Tags;
procedure Main is

Wthdrawal s_In_A Week : constant Natural := 3;
subt ype Money is Float;
type Account is tagged record
Bal ance_Of : Money : = 0.00; --Amount i n account

end record;
type Account _Ltd is new Account with record

Wthdrawal s : Natural := Wthdrawal s_I n_A Wek;
end record;
Nor mal : Account;
Restricted : Account _Ltd;
begi n
Nor nal (Balance_ O => 20.0);

Restricted := (Normal with 4);
Restricted := (Normal with Wthdrawals => 4);
end Mai n;
Note: wi t h isused to extendnor mal , an instance of an Account , intor estri ct ed, an instance of an

Account _Ltd.

The components may be named:

restricted := (normal with withdrawals => 4);

If there are no additional components,wi t h nul | record isusedtoformthe extension.

16.9 The observe-observer pattern

A danger in writing any program is that input and output of data values become entangled in the body of the code
of the program. When this happens the program becomes less easy to maintain and will require major changes if
the format of the input or output changes. By separating the input and output from the functionality of the program
allows a cleaner solution to be formulated.

The model-view paradigm in essence consists of:

) An observer: An object that has responsibility for displaying arepresentation of another
object.

) The observed: An object that has one or more observers who will display the state of the
object.

In the game of noughts and crosses, for example, the observed object would be the object representing the
board. The observer would be an object that has responsibility for displaying a representation of the board onto
the computer screen. There could be several implementations of the observer, depending on how the information
isto be displayed. For example, the observer may be implemented to display the board as a:

) Textual representation: When a console application is written.
) Asagraphical image: When an application with agraphical interface is developed.
This separation of responsibility isillustrated in Figure 16.4. In which the observed object 0xo is interrogated

by the object oxo_obser ver so that it can display a graphical representation of the noughts and crosses board
on the computer screen.

O M A Smith - May not be reproduced without permission

Polymorphism 241

X Screen
bserved Qbserver
0X0 0xo observer
Sgrs : Board_Array +—

Figure 16.4 Oxo observer and observed oxo board.
The observed object oxo is unaware of how its representation will be displayed, whilst the observer object
0x0_obser ver isunaware of how the observed object ox o represents and manipul ates the board.
16.9.1 The Observer’sresponsibilities

An observer class for an object isrequired to inherit from the type Cbser ver and override the method Updat e
with code that will display the state of the observed object.

M ethod Responsibility
Updat e Display the state of the observed object.

An implementor of an Obser ver class overrides the method Updat e with a method that displays an
appropriate representation of the observed object passed as a formal parameter to the method. The method
Updat e is called when the state of the object being observed changes and an update of the representation of the
objects stateisrequired.

The Ada specification of thisresponsibility is:

type Qbserver is tagged private;

procedure Update(The:in Observer; What:in Cbservable' C ass);

Note: The object being observed (What) is passed as it base representation. This object will need to be
converted back into its true type before it can be interrogated.

16.9.2 Theresponsibilities of the observable object

An observable class for an object isrequired to inherit from the type Cbser vabl e so that the following methods
may be made available to it.

M ethod Responsibility

Add_Qoser ver Add an observer to the observable object.

Del et e_Cbser ver Removes an observer.

Noti fy Observers If the object has changed, tells all observersto update
their view of the object.

Set _Changed Sets aflag to indicate that the object has changed.

O M A Smith - May not be reproduced without permission

242 Polymorphism

The Ada specification of thisresponsibility is:

type Cbservable is tagged private;
type P_Cbserver is access all Cbserver'd ass;

procedure Add_Cbserver (The:in out Cbservabl e;
Qin P_Cbserver);
procedure Del ete_Cbserver(The:in out Cbservabl e;
Qin P_Cbserver);
procedure Notify Cbservers(The:in out Cbservable' dass);
procedure Set_Changed(The:in out Cbservable);

Note: Observers are manipulated by using their access values, rather than the instance of the observer object

directly.

16.9.3 Putting it all together

The complete class specifications for the observer and observable classes are combined into a single package as

follows:

package O ass_Cbserve_Cbserver is
type Cbservable is tagged private;
type Cbserver is tagged private;

type P_Observer is access all Cbserver'd ass;

procedure Add_Cbserver (The:in out Cbservabl e;
Qin P_Cbserver);
procedure Del ete_Cbserver(The:in out Cbservabl e;
Qin P_Cbserver);
procedure Notify Cbservers(The:in out Cbservable' dass);
procedure Set_Changed(The:in out Cbservable);

procedure Update(The:in Observer; What:in Cbservable' C ass);

private

Max_Cbservers : constant := 10;
subtype Vi ewers_Range is |nteger range 0 .. Max_Qbservers;
subtype Viewers_Index is Viewers_Range range 1 .. Max_Cbservers;
type Viewers_Array is array(Viewers_lndex) of P_Cbserver;
type Observable is tagged record

Vi ewer s : Viewers_Array := (Ohers => null);

Last : Viewers_Range : = O;

St at e_Changed : Bool ean : = True;
end record;

type Cbserver is tagged null record;

end O ass_Cbserve_Observer;

Note: Unfortunately as the methods of the classes Observer and Observable are
interdependent it is not possible to easily separate this package into two distinct packages.

The implementation of the package Cl ass_CObser ve_Obser ver isasfollows:

mutually

package body C ass_Observe_OChserver is

O M A Smith - May not be reproduced without permission

Polymorphism 243

The method Add_Obser ver adds the access value of an observer to the array Vi ewer s. The exception
Constrai nt _Error israisedif this operation cannot be accomplished dueto lack of space.

procedure Add_Cbserver(The:in out Cbservabl e;
Qin P_Cbserver) is

begi n
for 1 in 1 .. The.Last |oop --Check for enpty sl ot
if The.Viewers(|) = null then
The. Viewers(|) := O - - Popul at e
return;
end if;
end | oop;
if The.Last >= Viewers_|ndex'Last then --Extend
rai se Constraint_ Error; -- Not enough room
el se
The. Last := The. Last + 1; -- Popul ate
The. Viewers(The.Last) := O
end if;

end Add_Observer;

The inverse method Del et e_Obser ver removes an observer for the observed object.

procedure Del ete_Cbserver(The:in out Cbservabl e;
Qin P_Cbserver) is

begi n
for I in 1 .. The.Last |oop --For each observer
if The.Viewers(|) = Othen --Check if to be renoved
The.Viewers(|) := null;
end if;
end | oop;

end Del et e_Cbserver;

When the model of the object (the observed) has changed and it is required to redisplay a representation of it
the methodNot i fy_Obser ver s iscalled. Thiscalsthe Updat e method in each observer.

procedure Notify Cbservers(The:in out Cbservable' Cass) is

begi n
for 1 in 1 .. The.Last |oop -- For each observer
if The.Viewers(|) /= null then --call it's
Update(The.Viewers(|).all, The);-- update nethod
end if;
end | oop;

The. St at e_Changed : = True; --
end Notify_Qbservers;

Note: The second parameter isthe observed object that is to be displayed by the Updat e method.

The method Set _Changed simply records that the state of the observed object has changed.

procedure Set_Changed(The:in out Cbservable) is
begi n

The. St at e_Changed : = True;
end Set _Changed;

O M A Smith - May not be reproduced without permission

244 Polymorphism

The method Updat e is overridden by an observed with appropriate code to display the state of the observable
object. This object is passed as the second parameter to the method.

procedure Update(The:in Observer; Wat:in Cbservable' Class) is
begi n

nul | ; --Shoul d be overridden
end Updat e;

end C ass_Cbserve_Observer;

Note: The parameter What isof type Cbser vabl e' Cl ass so that re-dispatching can take place.

16.10 Using the observe-observer pattern

The following is an implementation of the game of noughts and crosses using the observe-observer pattern.
16.10.1 The observed board object

The classBoar d that implements the board for the game of noughts and crossesis now defined as:

with C ass_Observe_Cbserver;
use C ass_CObserve_QObserver;
package C ass_Board i s

type Board is new Cbservable with private;
type Gane_State is (Wn, Playable, Draw);

procedure Add(The:in out Board; Pos:in |nteger;
Pi ece:in Character);
function Valid(The:in Board; Pos:in |Integer) return Bool ean;
function State(The:in Board) return Game_St at e;
function Cell(The:in Board; Pos:in Integer) return Character;
procedure Reset(The:in out Board);
private
subtype Board_Index is Integer range 1 .. 9;
type Board_Array is array(Board_lndex) of Character;
type Board is new Cbservable with record

Sqrs : Board_Array := (others =>"' "); --Initialize
Moves : Natural = 0;
end record;

end Cl ass_Board;

Note: Apart frominheriting fromthe class Cbser vabl e, thiscodeisidentical to that seenin Section 8.4.1.
The implementation of the classBoar d is defined in the body of the package Cl ass_Boar d asfollows:

package body Cl ass_Board is

The procedure add adds a counter either the character' X' or' O to the board.

procedure Add(The:in out Board; Pos:in |Integer;
Piece:in Character) is
begi n
The. Sgrs(Pos) := Piece;
end Add;

O M A Smith - May not be reproduced without permission

Polymorphism 245

The functionsval i d returnst r ue if the square selected is not occupied by a previously played counter.

function Valid(The:in Board; Pos:in Integer) return Boolean is
begi n
return Pos in Board_Array' Range and then
The. Sqrs(Pos) ="' ';
end Val i d;

The function Cel | returns the contents of a cell on the noughts and crosses board. This method is used to
interrogate the state of the board, without having to know how the state is stored. Using this method printing of
the state of the board can be separated from the code that manipul ates the board.

function Cell (The:in Board; Pos:in Integer) return Character is
begi n

return The. Sqrs(Pos);
end Cell;

The procedure Reset setsthe state of the board back to itsinitial state.

procedure Reset(The:in out Board) is

begi n
The. sqgrs = (others == " "); --All spaces
The. noves : = 0; --No of noves
end reset;

The function state returns the current state of the board.

function State(The:in Board) return Gane_State is
subt ype Position is Integer range 1 .. 9;
type Wn_Line is array(1 .. 3) of Position;
type All _Wn_Lines is range 1 .. 8;
Cells: constant array (All _Wn_Lines) of Wn_Line :=
((1,2,3), (4,5,6), (7,8,9), (1,4,7),
(2,5,8), (3,6,9), (1,5,9), (3,5,7)); --All win lines
First : Character;

begi n
for P in All _Wn_Lines | oop --All Pos Wn Lines
First := The.Sqgrs(Cells(Pw)(1)); --First cell in line
if First /=" " then -- Looks prom sing
if First = The.Sqgrs(Cells(PwW)(2)) and then
First = The. Sqrs(Cell s(Pw)(3)) then return Wn;
end if;
end if;
end | oop;
if The. Moves >= 9 then --Check for draw
return Draw, -- Board full
el se
return Pl ayabl e; -- Still playable
end if;
end State;

end d ass_Board;

O M A Smith - May not be reproduced without permission

246 Polymorphism
16.10.2 An observer for the classBoar d

The specification for the class Di spl ay_Boar d that will display a representation of the board contains the
single method Updat e that has responsibility for displaying a representation of the board on a text output
device.

with C ass_Observe_(bserver, C ass_Board, Ada.Text_|o;
use (C ass_bserve (Cbserver, Cass Board, Ada. Text |o;
package C ass_Display Board is

type Display_Board is new Qbserver with private;

procedure Update(The:in Display_Board; B:in Observable' d ass);
private
type Display_ Board is new Observer with record
nul |;
end record;
end d ass_Di spl ay_Boar d;

The implementation of the classDi spl ay_Boar d is shown below. The main point of interest is the conversion
of the second parameter B into an instance of a Boar d. This is required as the object is passed as an instance of
the class Observable. This down conversion will be checked to make sure that this object is an instance of Boar d.

package body C ass_Display_Board is
procedure Update(The:in Display_ Board; B: in Qobservable'Class) is
begi n
for 1 in1 .. 9 loop
Put(Cell(Board(B), |)); --Its really a Board
case | is --after printing counter
when 3 | 6 => -- print Row Separat or
New_Line; Put("--------- "), o--
New_Li ne;
when 9 => -- print new line
New Li ne;
when 1| 2| 4| 5| 7| 8 => -- print Col separator
Put(" | "):
end case;
end | oop;
end Updat e;
end d ass_Di spl ay_Boar d;

16.10.3 Thedriver code for the program of nought and crosses

O M A Smith - May not be reproduced without permission

Polymorphism 247

Thedriver program for the game of noughts and crosses follows the same style as seen earlier in Section 8.4.5.

with O ass_Board, C ass_Display_Board,

Ada. Text _| o, Ada.Integer_Text_lo, C ass_Cbserve_Qbserver;
use C ass_Board, d ass_Di spl ay_Board,

Ada. Text _| o, Ada.Integer_Text_lo, C ass_Cbserve_Observer;
procedure Main is

Pl ayer : Character; --Either 'X or 'O
Gane . Board; --An instance of C ass Board
Move . Integer; --Move from user
begi n
Player :="'X; --Set pl ayer

An instance of an observer of the board is passed to the method Add_CObser ver sothat it can be displayed.

Add_QObserver (Gane, new Di splay_Board);

Note: As a pointer to the object isrequired, a dynamic instance of the object is created for simplicity of code.
Naturally, this could have been done by taking the access val ue of a non-dynamic instance.

The code for the logic of the game asks each player in turn for a move, when a player has entered a valid
move, the method Not i fy_Cbser ver s isused to request adisplay of the new state of the board.

while State(Gane) = Playable | oop --Wil e playabl e
Put (Player &" enter nmove (1-9) : "); -- nove
Get (Move); Skip_Line; -- Get nove
if Valid(Gane, Move) then --Valid
Add(Gane, Myve, Player); -- Add to board
Notify_Observers(Gane);
case State(Gane) is --Gne is
when Wn =>

Put (Player & " wins");
when Pl ayable =>
case Pl ayer is --Next pl ayer
when ' X' => P| ayer ' '
when ' O => Pl ayer
when others => nul | ; --
end case;
when Draw =
Put("It's a draw ");
end case;
New_Li ne;
el se
Put ("Move invalid"); New_Line; --for board
end if;
end | oop;
New_Li ne(2);
end Mai n;

16.11 Sdf-assessment

) What is the difference between static and dynamic binding?
° What is an object’ stag?
[What is a heterogeneous collection of objects? How are heterogeneous collections of objects created

and used in Ada?

) What isaview conversion? Why are view conversions required?

O M A Smith - May not be reproduced without permission

248 Polymorphism

) How does the use of polymorphism help in simplifying program maintenance?

) Can you convert aderived class to a base class? Can you convert a base class to aderived class? Are
these conversions safe? Explain your answer.

16.12 Exercises

Construct the following:

° The classExecut i ve_Of f i ce which will extend annormal office by including biographical details
about the occupants. For example, *Ms Miranda Smith, Programming manager’.

° A new information program for a building which will include details about rooms, offices and executive
offices. Y ou should try and re-use as much code as possible.

° A program to record transactions made on different types of bank account. For example, the program
should be able to deal with at least the following types of account:

° A deposit account on which interest is paid.

° An account on which no interest is paid and the user is not allowed to be overdrawn.

O M A Smith - May not be reproduced without permission

17 Containers

This chapter describes the implementation and use of container objects. A container object is a store for

objects created in a program. The container will allow a programmer a greater flexibility in storing data
items than Ada’ s array construct.

17.1List object

A list isacontainer on which the following operations may be performed:

) Insert anew object into the list at any point.

) Delete an existing object from the list.

) Iterate through the objects held in thelist in either aforward or reverse direction.
Note: The number of items held in the list is dependent purely on available storage.

The list object is based on pointer semantics. A ‘pointer’ is used in this context as an iterator which steps

through the elements of the list. For example, a list of three integers and an iterator on the list is illustrated in
Figure 17.1.

Li st Iterator

4 4

OO O

Figure 17.1 A list and itsiterator.

Figure 17.2 shows the same list after inserting 99 before the current position of the iterator.

Li st | terator

fo Mo Mk g WG

Figure 17.2 After inserting 99 into the container.

A demonstration program to show the capabilities of the list is illustrated below. In this demonstration
program, alist is filled with the numbers 1 .. 10. The strategy for filling the list is to insert the numbersin reverse
order into the list. Theinsert function inserts an item before the current position of theiterator.

After the list has been filled, it is then printed, using the iterator to move from the first item in the list to the
list.

O M A Smith - May not be reproduced without permission

250 Containers

with Class_List;
pragna El aborate Al (dass_List);
package Cl ass_List_Nat is new C ass_List(Natural);

with dass List Nat, Class List.lterator;
pragna El aborate Al (dass_List_Nat, Cass_List.lterator);
package Cl ass_List_Nat_Iterator is new Cl ass_List_Nat.Iterator;

with Ada. Text _l o, Ada.lnteger_Text_lo, Cass_List_Nat,
Class_List_Nat_Iterator;
use Ada. Text_lo, Ada.lnteger_Text _Io,
Class_List_Nat, Cass_List Nat lterator;
procedure Main is

Nunber s . List;
Nunbers It : List _lter;
Val ue . I nteger;
begi n
Val ue : = 1;
Wil e Value <= 10 | oop
Last (Nunbers_It, Nunbers); --Set iterator Last
Next (Nunbers_It); -- Move beyond | ast
Insert(Nunbers_It, Value); --Insert before
val ue : = Value + 1; -- I ncrenent
end | oop;
Fi rst (Nunbers_It, Nunbers); --Set to start
while not Is_End(Nunbers_It) |oop --Not end of Iist
Put (Deliver(Nunbers_It) , Wdth=>3); -- Print
Next (Nunbers_It); --Next item
end | oop;
New_Li ne;
end Mai n;
Note: When an instance of thislist is created there is no need to specify the number of items that will be held
inthelist.

Thelist Nunber s hasaniterator Number s_|t whichisset initially to point to the last element of thelist by:

Last (Nunbers_It, Nunmbers); --Set iterator Last

Theiterator is then moved beyond the last item so that a new number may be inserted at the end of the list.

Next (Nunbers_It); --Move beyond | ast
Insert(Numbers_It, Value); --Insert before

In printing the numbers in the list the iterator Nunmber s_|t is moved through the elements of the list. The
function | s_End deliverstrue when the end of thelist is reached. The procedure Next moves the iterator to the
potentially next item in the list. If the current item ‘pointed at’ by the iterator in the list is the last item then a call
tol s_End will now deliver true. The current item that the iterator is ‘pointing at' is delivered using the function
Del i ver.

The code to print the contents of thelistis:

Fi rst (Nunbers_It, Nunbers); --Set to start
while not |Is_End(Nunbers_It) | oop --Not end of Iist
Put (Deliver(Nunbers_It) , Wdth=>3); -- Print
Next (Nunbers_It); --Next item
end | oop;

O M A Smith - May not be reproduced without permission

Containers 251

Thismirrors closely the mechanism used to access sequentially the elements of an array in Ada.
The list isimplemented as a generic dass | i st and its generic child | t er at or . The two classes allow the

elaboration of:
° The object nunber s which isthelist of natural numbers.
[The objectnum i t , aniterator whichis used to step through the objects held in the list.

17.1.1 List vs. array

Criteria List Array

The number of items held can be increased o] X

at run-time.

Deletion of an item leaves no gap when the o} X

items are iterated through.

Random accessis very efficient. X 0O
Note: Ada array’ s bounds are fixed once the declaration is elabor ated.

17.2 Methods implemented in alist

The methods that are implemented in an instance of the classl i st areasfollows:

M ethod Responsibility
Initialize |[Initializethe container.
Fi nalize Finish using the container object.
Adj ust Used to facilitate a deep copy.
= Comparison of alist for equality.
Note: A full explanation of adj ust can befoundin Section 17.3.

Whilst the methods that are implemented in an instance of theclassLi st _I t er are:

M ethod Responsibility

Initialize |Initidizetheiterator.

Fi nalize Finish using the iterator object.

Del i ver Deliver the object held at the position indicated by theiterator.

First Set the current position of the iterator to the first object in the
list.

Last Set the current position of the iterator to the last object in the list.

I nsert Insert into the list an object before the current position of the
iterator.

Del ete Remove and dispose of the object in the list which is specified
by the current position of theiterator.

Is_end Deliver trueif theiteration on the container has reached the end.

Next Move to the next item in the container and make that the current
position.

Prev Move to the previous item in the container and make that the
current position.

17.2.1 Example of use

The following program illustrates the use of a list. In this program natural numbers are read and inserted in
ascending order into alist. The contents of thelist are then printed.

O M A Smith - May not be reproduced without permission

252 Containers

The strategy used for inserting individual numbersin ascending order into thelist is asfollows:

) Search through the list to find the position of the first number in the list that has a value greater than
the number to be inserted.

) The new number isthen inserted into the list before this number. Remember that insertions are always
done before the current item.

with O ass_List;
pragma El aborate_All (dass_List);
package Cl ass_List_Nat is new C ass_List(Natural);

with dass List Nat, Class List.lterator;
pragma El aborate Al l (Class_List_Nat, Class_List.lterator);
package Cl ass_List_Nat_Iterator is new Cass_List_Nat.lterator;

with Ada. Text _l o, Ada.lnteger_Text_lo, C ass_List_Nat,
Class List Nat Iterator;

use Ada.Text _|o, Ada.Integer_Text |o,
Class_List_Nat, Cass_List_Nat_lterator;

procedure Main is
Nurber s . List;
Nunmbers It : List _lter;
Num I n_List: Natural;

begi n
First(Numbers_It, Numbers); --Setup iterator
while not End_O _File |oop --Wile data
whi l e not End_Of _Line | oop
Get (Num ; --Read nunber
First(Nunbers_It, Nunbers); --lterator at start

while not |Is_End(Nunmbers_It) loop --scan through |ist
In_List := Deliver(Numbers_It);

exit when In_List > Num --Exit when | arger no.
Next (Nunbers_It); --Next item
end | oop;
Insert(Nunmbers It, Num); -- before curent nunber
end | oop;
Ski p_Li ne; --Next |ine
end | oop;

Thelist isprinted out by the following code:

Put ("Nunbers sorted are: ");

Fi rst (Nunbers_It, Nunbers); --Set at start
while not Is_End(Nunbers_It) | oop
In_List := Deliver(Nunmbers_It); -- Current nunber
Put(In_List); Put(" "); -- Print
Next (Nunbers_It); -- Next number
end | oop;
New_Li ne;
end Mai n;

Which when run with the following data:

10 86 2 4

O M A Smith - May not be reproduced without permission

Containers 253

will produce the following results:

Nunbers sorted are: 2 4 6 8 10

17.3 Specification and implementation of the list container

The specification of the container list is split between a parent package Cl ass_| i st which contains details of
the container and a child package Cl ass_|ist.|terator which contains details of the iterator. The
specification for the container is:

with Ada. Fi nali zation, Unchecked_Deal | ocati on;
use Ada.Finalization;
generic

type T is private; --Any type
package Cl ass_List is

type List is new Controlled with private;

procedure Initialize(The:in out List);

procedure Initialize(The:in out List; Data:in T);
procedure Finalize(The:in out List);

procedure Adjust(The:in out List);

function "=" (F:in List; S:in List) return Bool ean;
private
type Node; --Tentative declaration
type P_Node is access all Node; --Pointer to Node
type Node is record
Pr ev . P_Node; - -Previ ous Node
Item T, --The physical item
Next : P_Node; - -Next Node
end record;
type List is new Controlled with record
First _Node : aliased P_Node := null; --First itemin list
Last _Node : aliased P_Node := null; --First itemin list
end record;

end d ass_Li st;

The implementation of the List container object uses a linked list to hold the data items. This data structure
will alow for apossibly unlimited number of data items to be added as well as the ability to add or remove items
from any point in the list. When an instance of the container colours holds three items (Red, Green, Blue) the data
structure representing the datawould be as shown in Figure 17.3.

Colours
Last Node
First_Node - #
\ __’ __> Y Next
Red Green Blue I'tem
° |« < Prev
Figure 17.3 Object col our s holding the three coloursRed, G een and Bl ue.
Note: The object Col our s holds a pointer to the root of the linked list.

Adding itemsto thelist is performed by the iterator.

O M A Smith - May not be reproduced without permission

254 Containers

The implementation of the class |i st is shown below. In the implementation the internal procedure
Rel ease_St or age is used to release all of the storage of the list. This procedure uses the internal procedure
Di spose_Node to actually release individual elements of storage.

package body C ass_List is

procedure Di spose_Node i s
new Unchecked_Deal | ocati on(Node, P_Node);

procedure Rel ease_Storage(The:in out List) is
Cur : P_Node := The.First_Node; --Pointer to curr node

Tnp : P_Node; --Node to di spose
begi n
while Cur /= null |oop --For each itemin |ist
Tnp : = Cur; --ltemto dispose
Cur := Cur.Next; --Next node
Di spose_Node(Tnp); --Di spose of item
end | oop;

end Rel ease_St or age;

The overloaded procedures| ni ti al i ze set up either an empty list or alist of oneitem. The first version of
I nitializewill beautomatically called whenever aninstance of Li st is elaborated. Remember that Li st is

acontrolled type.

procedure Initialize(The:in out List) is

begi n
The. First_Node := null; --Empty I|ist
The. Last _Node := null; --Empty I|ist

end Initialize;

procedure Initialize(The:in out List; Data:in T) is

begi n
The. First_Node : = new Node' (null, Data, null);
The. Last _Node := The. First_Node;

end Initialize;

The procedure Fi nal i ze, which is called when an instance of a Li st goes out of scope, releases any
storage used in holding objects in the list. This process is decomposed into the internal procedure
Rel ease_St or age which performsthe actual return of the storage asit iterates along the linked list.

procedure Finalize(The:in out List) is
begi n
if The.First_Node /= null then
Rel ease_Storage(The);
The. First_Node := null;
end if;
end Finalize;

O M A Smith - May not be reproduced without permission

Containers 255

When an instance of classLi st isassigned, only the direct storage contained inthe record |i st will be
copied. This will not physically duplicate the storage contained in the list, but only copy the pointers to the list.
When a controlled object is assigned, the procedure Adj ust is called after the assignment has been made. The
procedure Adj ust is used to perform any additional actions required on an assignment. The exact effect of
assigning a controlled object isas follows:

Assignment of controlled objects | Actionsthat take place on assignment
Anon : = B;
A .= B; Adj ust (Anon);
Finalize(A);
A 1= Anon;
Adjust(a);
Finalize(Anon);
Action on assignment Commentary
Anon := B Make atemporary anonymous copy anon.
Adj ust (Anon) ; Adjustments required to be made after copying the
direct storage of the source object B to Anon.
Finalize(A); Finalize the target of the assignment.
A : = Anon; Perform the physical assignment of the direct
components of the anon object.
Adj ust (A); Adjustments required to be made after copying the
direct storage of the Anon object.
Finalize the anonymous object Anon.
Fi nal i ze(Anon) ;

Note: If the object’ s storage does not overlap, which will be the usual case, then the compiler may implement
the following opti mization:
Fi nalize(A); A := B; Adjust(A);
Look at the effect of the assignment A : = A; to see why this optimization may not be performed when
the object’ s storage overlaps.
If the source and target are the same, then the operation may be skipped.
The procedure Adj ust is used to create a new duplicate copy of the storage in the list. The contents of the
target in the assignment are updated to point to this newly created copy. Hence, there are now two identical copies
of thelinked list:

° Thelinked list in the Target.
° Thelinked list in the Source .

procedure Adjust(The:in out List) is

Cur : P_Node := The.First_Node; --Original |ist
Lst : P_Node := null; --Last created node
Prv : P_Node := null; --Previously created node
Fst : P_Node := null; --The first node
begi n

while Cur /= null |oop
Lst := new Node' (Prv, Cur.ltem null)

if Fst = null then Fst := Lst; end if;
if Prv /= null then Prv.Next := Lst; end if;
Prv := Lst;
Cur := Cur. Next; --Next node
end | oop;
The. First _Node : = Fst; - - Updat e
The. Last _Node = Lst;
end Adj ust;

O M A Smith - May not be reproduced without permission

256 Containers

When comparing two lists, the physical storage of the list needs to be compared, rather than the access values
which point to the storage for the list. Remember, two lists may contain equal contents yet be represented by
different physical lists.

function "=" (F:in List; S:in List) return Boolean is
F _Node : P_Node := F.First_Node; --First |ist
S Node : P_Node := S.First_Node; --Second |ist

begi n
while F_Node /= null and S Node /= null | oop
if F_Node.ltem/= S _Node.ltem then

return Fal se; --Different itens
end if;
F_Node := F_Node. Next; S Node := S _Node. Next;
end | oop;
return F_Node = S Node; --Both NULL if equal
end "=",
Note: When = isoverloaded, /= is also overloaded with the definition of not =.

Thisistruefor = which returns a Boolean value.

17.3.1 Thelist iterator

The specification for the iterator, which isimplemented as a child package of the package Cl ass_Li st , is:

generic
package Class_List.lterator is

type List _Iter is limted private;

procedure First(The:in out List_Iter; L:in out List);
procedure Last(The:in out List_Iter; L:in out List);

function Deliver(The:in List_lIter) return T;
procedure Insert(The:in out List_Iter; Data:in T);
procedure Delete(The:in out List _lter);
function |Is_End(The:in List_Iter) return Bool ean;
procedure Next(The:in out List_lter);
procedure Prev(The:in out List_Iter);

private
type P_P_Node is access all P_Node;
type List_lter is record

Cur _List _First: P_P _Node := null; --First in chain
Cur _List_Last : P_P_Node := null; --Last in chain
Cur _Node : P_Node =null; --Current item
end record;
end Cass_List.Iterator;
Note: The child package Cl ass_Li st. |t erator mustbegenericasitsparentisgeneric.

O M A Smith - May not be reproduced without permission

Containers 257

When theiterator Col our s_ 1t hasbeen set at the start of thelist Col our s, the resulting data structureis as
illustrated in Figure 17.4.

Colours_It Colours

Cur_List_Last >
Cur_List_First —1 5] #
Cur_Node \t > »[o
Red Green Blue
o |« <

Figure 17.4 Theinterrel ationship between the two objectscol our s and col ours_it.
Note: Theiterator holdspointersto theroot, current and previous positionsin the container.

In the implementation of the iterator for thelist, the procedure, fi r st and| ast set pointersin the iterator to
thefirst or last object in the list respectively.

package body Class_List.lterator is

procedure Di spose_Node i s
new Unchecked_Deal | ocati on(Node, P_Node);

procedure First(The:in out List_lter; L:in out List) is
begi n
The. Cur _Node
The. Cur _List_First:
The. Cur _Li st_Last

L. Fi rst _Node; --Set to first
L. Fi rst _Node' Unchecked_Access;
L. Last _Node' Unchecked Access;

end First;
procedure Last(The:in out List_lter; L:in out List) is
begi n

The. Cur _Node L. Last _Node; --Set to |ast

The. Cur _List_First:
The. Cur _Li st _Last
end Last;

L. Fi rst _Node' Unchecked_Access;
L. Last _Node' Unchecked Access;

Note: Theuseof ' Unchecked_Access to deliver the access value of the positions of the first and last
access values of itemsin thelist.

The access values of the first and last nodes in the list are recorded in the iterator so that they may be updated
should an insertion or deletion take place at the start or the end of thelist.
The procedure Del i ver returnsacopy of the current item pointed at by theiterator.

function Deliver(The:in List_Iter) return Tis
begi n

return The. Cur_Node.ltem --The current item
end Deliver;

Note: Itisan error to try and deliver the contents of an non-existant element of the list.

O M A Smith - May not be reproduced without permission

258 Containers

The codefor | nsert is complex due to the necessity of handling insertion at different places in the linked
list. In particular, the list’s access values to the physical storage of the list will need to be updated. Remember, the
iterator only knows about the current position in the list.

In the implementation of Inser t there are four distinct cases to handle when a data item is inserted. Thisis
summarized in the table below:

Position Commentary

On an empty list Will need to update the list’s access values

Cur _List _First andCur _List_Lastas
well as update the current position Cur _Nodein
theiterator.

Beyond the last item in the list Will need to update the list’ s access value

Cur _Li st _Last as well as update the current
position Cur _Nodeintheiterator.

Before thefirst item Will need to update the list’ s access value
Cur _List_First.
Inthe middle of thelist No updating required to thelist’s access values

nor the current position of theiterator.

The implementation of the insert procedureisasfollows:

procedure Insert(The:in out List_lter; Data:in T) is

Tnp . P_Node;
Cur . P_Node = The. Cur _Node; --Current el enent
First : P_P Node := The.Cur List First;
Last : P_P _Node := The.Cur_List_Last;
begi n
if Cur = null then --Enpty or last item
if First.all = null then -- Enpty list
Tnp := new Node' (null, Data, null);
First.all := Tnp;
Last.al | ;= Tp;
The. Cur _Node : = Tnp;
el se -- Last

Tnp := new Node' (Last.all, Data, null);

Last.all.Next := Tnp;
Last.all = Tnp;
The. Cur _Node : = Tnp;
end if;
el se
Trp : = new Node' (Cur.Prev, Data, Cur);
if Cur.Prev = null then --First item
First.all := Tnp;
el se
Cur. Prev. Next := Tnp;
end if;
Cur.Prev := Tnp;
end if;
end | nsert;

O M A Smith - May not be reproduced without permission

Containers 259

In the implementation of Del et e there are two different pointers to fix: the forward pointer and the previous
pointer in the linked list. Each of these cases leads to further specializations depending on whether the object
deleted isthefirst, last or middle object in thelist.

procedure Del ete(The:in out List_lter) is
Cur . P_Node = The. Cur _Node; --Current el enent
First : P_P_Node := The.Cur_List_First;
Last : P_P_Node := The. Cur_List_Last;
begi n
if Cur /= null then --Sonmething to delete
if Cur.Prev /= null then --Fix forward pointer;
Cur.Prev.Next := Cur.Next; -- Not first in chain
el se
First.all := Cur.Next; -- First in chain
if First.all = null then
Last.all := null; -- Enpty list
end if;
end if;
if Cur.Next /= null then --Fi x backward pointer;
Cur.Next.Prev := Cur.Prev; -- Not last in chain
el se
Last.all := Cur.Prev; -- Last in chain
if Last.all = null then
First.all := null; -- Enpty list
end if;
end if;
if Cur.Next /= null then --Fi x current pointer
The. Cur _Node : = Cur. Next; -- next
elsif Cur.Prev /= null then
The. Cur _Node := Cur. Prev; -- previous
el se
The. Cur _Node : = nul|; -- none enpty |ist
end if;
Di spose_Node(Cur); --Rel ease storage
end if;
end Del et e;

The function| s_End returns true when the iterator is moved beyond the end of thelist, or beyond the start of
thelist.

function |Is_End(The:in List_lter) return Boolean is
begi n

return The. Cur _Node = null; --True if end
end | s_End;

O M A Smith - May not be reproduced without permission

260 Containers

The procedure Next and Pr ev move the iterator on to the next / previous item in thelist. If the iterator is not

currently pointing at an item, the iterator is unmodified. The end of thelist isindicated by the iterator pointing to a
nul | value. By inspecting thelist this case can be distinguished from the case of an empty list.

procedure Next(The:in out List_Iter) is

begi n
if The.Cur_Node /= null then --
The. Cur _Node := The. Cur_Node. Next ; - - Next
end if;
end Next;
procedure Prev(The:in out List_Iter) is
begi n
if The.Cur_Node /= null then --
The. Cur _Node := The. Cur_Node. Prev; --Previous
end if;
end Prev;

end Cass_List.|lterator;

Note: If you move the iterator to beyond the first element with pr ev then it is your responsibility to reset the
iterator’sposition. Thecl ass | i st will consider the position at the end of thelist.

17.3.2 Relationship between alist and itsiterator

The list on which the iterator navigates must be writable. This is because the iterator may be used to insert or
delete an item in the list. Another solution would have been to have two distinct iterators for read and write
operations on the list.

17.4 Limitations of thelist implementation

A limitation of thisimplementation isthat alist object is physically duplicated when it is assigned. Thisisreferred
to as a deep copy of an object. A deep copy of an object can involve the use of considerable time and storage
space.

There are two options for the implementation of assignment. These options are summarized in the table below:

Type of copy Commentary
Deep copy The whole physical datastructureis duplicated.
Shallow copy Only the pointer held directly in the object is duplicated.

For example, consider the data structure Or i gi nal representing alist of colours held as alinked list. Thisis
illustrated in Figure 17.5 which shows the memory layout for the list container Or i gi nal which holds the three
coloursRed, Gr een and Bl ue.

Original

e e s e I

Red Green Blue

Figure 17.5 Illustration of the memory layout for alinked list of three colours.

O M A Smith - May not be reproduced without permission

A deep copy of this structure:

Containers 261

Li st original,

copy;

copy := original;

-- Deep copy

would give the memory layout asillustrated in Figure 17.6.

Original
= °
Red Green Blue
o |«
Copy
\ —1—» — °
Red Green Blue
o |«
Figure 17.6 Effect of thedeepCopy := Original ;.

A shallow copy :

Li st original, copy;

copy := original; -- Shal | ow copy

would produce the memory layout asillustrated in Figure 17.7.
Oigi nal

- v
— b > o

Red G een

Copy

Figure 17.7 Effect of the shallow copycopy : = ori gi nal ;

The major problem with the shallow copy is that serious errors will occur in aprogram if achange to the original
data structure is made. This is because the copy will change as well. Worse, if the storage for the Ori gi nal
object isreleased, then the

object Copy will be unsafe as it now points to storage that is no longer considered active by the Ada run-time
system.

O M A Smith - May not be reproduced without permission

262 Containers

Ada's assignment statement performs a bit by bit copy of the source to the destination, which is a shallow
copy. If a deep copy is required, then the assignment operator must be overloaded with a new meaning. The
solution taken in the classLi st was to make assignment and comparison of a container perform a deep copy, and

ashallow equality operation.
17.5 Reference counting

One solution to the problems encountered with a shallow copy is to implement a reference counting scheme. In a
reference counting scheme, an additional component is held which is the number of active references to the data
structure. A consequence of using this scheme is that additional code needs to be executed on an assignment. For
example, the previously described list would be stored asillustrated in Figure 17.8.

Figure 17.8 A reference counted list.

Original

E_> 1 references

> » >
Red Green Blue
o |« <
Note: Theroot of the list now contains the number of references that are made to this data structure.

When a shallow copy is made, for example, with the assignment:

copy := original;

the resulting data structure will be asillustrated in Figure 17.9.

Original
E_> 2 references
Copy — ¢
B > e
Red Green Blue
o |« <

Figure 17.9 Two objects sharing the same physical storage.

The actionsthat take place for the shallow copy ‘copy : = original;’ are:

O M A Smith - May not be reproduced without permission

Note:

® |f the objects overlap (share the same storage):

Action on assignment

Commentary

Anon := Original;

Perform the assignment:
"Anon := Original;’

Adj ust (Anon) ;

Increment the reference count for the object
Anon.

Fi nal i ze(Copy) ;

Decrement by one the reference count for the
object Copy.

If thisis now zero, release the storage that the
object Copy pointsto.

Copy := Anon;

Perform the assignment:
"Copy := Original;’

Adj ust (Copy) ;

Increment the reference count for the object
Copy.

Fi nal i ze(Anon);

Decrement by one the reference count for the
object Anon.

If thisis now zero release the storage that the
object Anon points to.

e |f the objects do not overlap, the following optimization may be performed:

Action on assignment

Commentary

Finalize(Original);

Decrement by one the reference count for the
object Ori gi nal .

If thisis now zero, release the storage that the
object Ori gi nal pointsto.

Copy := Original;

Perform the assignment:
"Copy := Original;'

Adj ust (Copy) ;

Increment the reference count for the object
Copy.

The compiler may generate no code if the target and the source are the same.

Containers 263

When areference counted item is passed as a parameter to afunction or procedure by value, for example:

Note:

Procedure Call of procedure
procedure Put(L:in List) is decl are

begi n Col ours : List;

ce Begi n
end Put; Put (Colours);
end;
then only the following actions are performed:
Put (Col ours) Commentary

L : = Col ours;

Perform the assignment of col our s to the

formal parameter:
"L := col ours;"

Adj ust (L) ; Increment the reference count for the actual
parameter L.
When the procedure put isexited, f i nal i ze will be called on the formal parameter | .

O M A Smith - May not be reproduced without permission

264 Containers

17.6 Implementation of a reference counting scheme

A wrapper class for an object that will implement a reference counting has the following major methods:

M ethod Responsibility

Initialize |[Initialize an object contained in the reference counting wrapper
object.

Del i ver Deliver the contents of the object wrapped by the reference

counting object.

Del i ver _Ref | Deliver the access value of the object wrapped by the reference
counting object.

Uni que Make the target of an assignment a unique copy.

An example of the use of aninstantiationCl ass_Account _Rc of thisgeneric classis shown below. Firstly,
two wrapped instances of the classAccount are elaborated.

Oiginal, Copy : O ass_Account_Rc. Obj ect;

The normal assignment operation now delivers a shallow copy:

Copy := Original; --Shal | ow copy

To make the object Copy not share storage with the object Original the method Uni que isused asfollows:

Uni que(Copy); --Deep copy

O M A Smith - May not be reproduced without permission

Containers 265
17.6.1 Ada specification

The Ada specification for this generic classis asfollows:

wi th Ada. Finalization;
use Ada. Finalization;

generic
type T is private; --The type
Nul | _Val ue:in T; --ldentity el ement

package C ass_Cbject _Rc is
type Object is new Controlled with private;
type P_.T is access all T;

procedure Initialize(The:in out Object);
procedure Initialize(The:in out Object; Data:in T);
procedure Finalize(The:in out Object);
procedure Adjust(The:in out Object);
function Deliver(The:in Object) return T,
function Deliver_Ref(The:in Object) return P_T;
procedure Uni que(The:in out bject);

private
procedure Build_Storage (The:in out Object; Value:in T);
procedure Rel ease_Storage(The:in out Object);

type Descriptor;
type P_Descriptor is access all Descriptor;

type Descriptor is record

Ref s : Natural; --References to this data
bject : aliased T; --The physical data
end record;

type Object is new Controlled with record
P_Desc : P_Descriptor:= null; --Descriptor for a nunber
end record;

end d ass_nj ect _Rc;

So that an object can be reference counted, anew classisinstantiated with parameters of the object’s type and
the null value for the type. For example, to reference count instances of the class Account, the following
instantiation would be made:

with O ass_Account;
package Pack_Consts i s

Nul | _Account: C ass_Account. Account;
end Pack_Consts;

with Pack_Consts, C ass_Object_Rc, O ass_Account;
package C ass_Rc_Account is
new Cl ass_Ohj ect _Rc(C ass_Account . Account,
Pack_Consts. Nul | _Account);

Note: In this instantiation, the null value for the type is simply an instance of Account , which contains a
zero balance.

O M A Smith - May not be reproduced without permission

266 Containers

17.6.2 Ada implementation

The implementation of the classis shown below. In this, the internal procedure Bui | d_St or age isresponsible
for allocating a new storage element. Whilst the internal procedure Rel ease_St or age is responsible for
releasing storage when its reference count is zero.

wi th Unchecked _Deal | ocati on;
package body Cl ass_Object_Rc is
procedure Build_Storage (The:in out Cbject; Value:in T) is
begi n
The. P_Desc : = new Descriptor' (1, Val ue);
end Bui | d_St or age;

procedure Dispose is
new Unchecked_Deal | ocati on(Descriptor, P_Descriptor);

procedure Rel ease_Storage(The:in out Object) is
begi n
The. P_Desc. Refs : = The. P_Desc. Ref s- 1;
if The.P _Desc.Refs = 0 then
Di spose(The.P_Desc);
el se
nul | ;
end if;
end Rel ease_St or age;

Theprocedurel ni ti al i ze builds storage for arecord which holds the data item and the reference count for
the dataitem. Initially this reference count will be zero.

procedure Initialize(The:in out Object) is
begi n

Bui | d_Storage(The, Null _Value);
end Initialize;

procedure Initialize(The:in out Object; Data:in T) is
begi n

Bui | d_Storage(The, Data);
end Initialize;

The procedure fi nal i ze is decomposed into the procedure Rel ease_St or age which releases the
storage for the managed dataitem only when the reference count goes to zero.

procedure Finalize(The:in out Qbject) is
begi n
if The.P_Desc /= null then
Rel ease_St orage(The);
The. P_Desc := nul | ;
end if;
end Finalize;

O M A Smith - May not be reproduced without permission

Containers 267

The procedure Adj ust isautomatically called whenever an assignment or implied assignment of a controlled
object takes place. The reason for this is that when an assignment of an object managed by this class is made,
there are now two references to the object. The procedure adj ust has the responsibility of managing this
process, which it does by increasing the reference count to the object by 1.

procedure Adjust(The:in out Cbject) is
begi n

The. P_Desc. Refs : = The. P_Desc. Ref s+1;
end Adj ust;

Remember, when an assignment of a controlled object is made, the following sequence of events occurs:

Assignment of controlled objects Actionsthat take place
Anon : = B;
A = B; Adj ust (Anon);
Finalize(A);
A = Anon;
Adjust(A);
Fi nali ze(Anon);
Note: When the storage for the source and target do not overlap, this process can be optimized by the
compiler to:

Finalize(A); A := B; Adjust(A);

The functionDel i ver returnsacopy of the managed object

function Deliver(The:in Cbject) return Tis
begi n

return The. P_Desc. Obj ect ;
end Deliver;

whilst the functiondel i ver _r ef returnsan access value to the managed object.

function Deliver_Ref(The:in Object) return P.T is
begi n

return The. P_Desc. Obj ect' access;
end Del i ver _Ref;

The procedure uni que converts the object managed by the class into a unique copy. This may involve a deep
copy of the managed object.

procedure Unique(The:in out Obhject) is
Tnp : P_Descriptor;
begi n
if The.P_Desc.Refs > 1 then
The. P_Desc. Refs : = The. P_Desc. Ref s-1;
Tp : = new Descriptor' (1, The. P_Desc. Obj ect);
The. P_Desc : = Tnp;
end if;
end Uni que;
end O ass_Obj ect _Rc;

O M A Smith - May not be reproduced without permission

268 Containers

17.6.3 Putting it all together

The program below illustrates the use of the package Cl ass_Obj ect _Rc to provide a reference counted
Account class. Firstly, the generic package Cl ass_Account _Rc is used to create the specific package
Cl ass_Account _Rc.

with O ass_Account;
package Pack_Consts i s

Nul I _Account: d ass_Account. Account;
end Pack_Consts;

with Pack_Consts, C ass_Object_Rc, O ass_Account;
package Cl ass_Account_Rc is
new C ass_Obj ect _Rc(d ass_Account . Account,
Pack_Consts. Nul | _Account);

Then the class Account _Rc is used in the following example program to illustrates a deep and a shallow
copy.

with Ada. Text _| o, Ada.Fl oat_Text_lo,
Cl ass_Account, C ass_Account_Rc, Statenent;
use Ada.Text _lo, Ada.Float_Text _|o,
Cl ass_Account, C ass_Account Rc;
procedure Main is
Original, Copy : C ass_Account _Rc. Qbj ect ;
begi n
Deposit(Deliver_Ref(Original).all, 100.00);
Put ("copy := original; (Shallow copy)"); New_Line;
Copy := Oiginal; --Shal | ow copy
Statenment(Deliver_Ref(Original).all); --The sane obj ect
St at ement (Del i ver _Ref (Copy). all); -
Put (" Make copy uni que (Deep copy if necessary)"); New_Line;

Uni que(Copy); --Deep copy
Deposit(Deliver_Ref(Copy).all, 20.00); --copy only
Statement (Deliver_Ref(Original).all); --Uni que obj ect
Statenment (Deliver_Ref(Copy).all); -- " "
end Mai n;
Note: all isused to de-reference the access value returned by the functionDel i ver _Ref .

The procedure St at emrent is the previously seen procedure in Section 6.3.2 that prints a mini-
statement for a bank account.

When the above program is compiled and run the output produced is as follows::

M ni statenent: The anmount on deposit is £100.00
M ni statenent: The anmount on deposit is £100.00

Make copy uni que (Deep copy if necessary)
M ni statement: The amount on deposit is £100.00

M ni statement: The amount on deposit is £120.00

O M A Smith - May not be reproduced without permission

Containers 269

17.7A set

Using asabase classtheclassLi st , aclass to represent a set can be easily created using inheritance. The class
Set hasthefollowing responsibilities;

M ethod Responsibility

Put Display the contents of the set.

+ Form the union of two sets.

Set _Const Return a set with a single member.
Menber s Return the numbers of itemsin the set.

The Ada specification for the classSet isasfollows:

with dass List, Class List.|lterator;
pragne El aborate Al l(Cass_List, Cass_List.Iterator);
generic

type T is private;

with procedure Put(IteminT) is <>

with function ">" (First,Second:in T) return Boolean is <>;

with function "<" (First,Second:in T) return Boolean is <>;
package Cl ass_Set is

type Set is private;

procedure Put(The:in Set);

function "+"(F:in Set; S:in Set) return Set;

function Set_Const(Item in T) return Set;

function Menbers(The:in Set) return Positive;
private
package Class_List_ T is new dass_List(T);

package Class_List_T Iterator is new Class_List_T.Iterator;
type Set is new Class_List_T.List with record
El ements : Natural := 0; --Elenents in set
end record;
end C ass_Set;

Note: On instantiation of the class, a procedure put and definitions for > and < must be provided, either
explicitly or implicitly.

In the implementation of the class, the procedure put listsin acanonical form the elements of the set.

wi th Ada. Text | o;
use Ada. Text _lo;
package body Cl ass_Set is
use Class List T, Cass List T Iterator;

procedure Put(The:in Set) is

It : List_lter;

C The : List := List(The);
begi n

Put("("); First(It, C.The);

for I in 1 .. The.El enments | oop

Put (Deliver(lt)); Next(It);
if | /= The.El ements then Put(","); end if;
end | oop;
Put (*)");
end Put;

O M A Smith - May not be reproduced without permission

270 Containers

A simple merging process is used to form the union of two sets.

function "+" (F:in Set; S:in Set) return Set is

Res It . List _Iter;

FIt,SIt : List_lter;

Res : Set;

F_List, S List: List;
begi n

F List := List(F); S List := List(S);
First(F_It, List(F_List));
First(SIt, List(S_List));
First(Res_It, List(Res));

while (not Is_End(F_It)) or (not Is_End(S_It)) |oop
if Is_End(F_It) then

Next (Res_It); Insert(Res_It, Deliver(S_.It));

Next (S_It);

sif Is_End(S_It) then

Next (Res_It); Insert(Res_It, Deliver(F_lt));

Next (F_It);

elsif Deliver(F_It) < Deliver(S_It) then
Next (Res_It); Insert(Res_It, Deliver(F_lt));
Next (F_It);

elsif Deliver(F_It) > Deliver(S_It) then
Next (Res_It); Insert(Res_It, Deliver(S_.It));
Next (S _It);

elsif Deliver(F_It) = Deliver(S_It) then
Next (Res_It); Insert(Res_It, Deliver(F_It));
Next (F_It); Next(S_It);

e

end if;
Res. El enents := Res. El enents + 1;
end | oop;
return Res;
end "+";
Note: The copying of an instance of a set to a list object so that it can be manipulated.

The procedure Set _Const returns a set with a single element, whilst the function menber s returns the
number of elementsin the set.

function Set_Const(Item in T) return Set is
Res : Set;

begi n
Initialize(Res, Item); Res.Elenents := 1;
return Res;

end Set Const;

function Menmbers(The:in Set) return Positive is
begi n

return The. El enent s;
end Menbers;

end d ass_Set;

O M A Smith - May not be reproduced without permission

Containers 271
17.7.1 Putting it all together

The program below illustrates the use of a set to record the ingredientsin a sandwich.

package Pack_Types is
type Filling is (Cheese, Onion, Ham Tomato);
end Pack_Types;

with Ada. Text _I o, Pack_Types;
use Ada. Text | o, Pack_Types;
procedure Put_Filling(Cin Filling) is
begi n
Put(Filling' Image(C));
end Put_Filling;

with Pack_Types, dass_Set, Put_Filling;
use Pack_Types;
pragna El aborate Al |l (O ass_Set);
package Cl ass_Set _Sandwich is
new Class_Set(T => Pack_Types.Filling, Put => Put_Filling);

with Pack_Types, Ada.Text _l|o, Ada.Integer_Text_lo, O ass_Set_Sandw ch;
use Pack_Types, Ada.Text_lo, Ada.l|nteger_Text_lo, C ass_Set_Sandw ch;
procedure Main is

Sandwi ch : d ass_Set _Sandw ch. Set;
begi n

Sandwi ch : = Sandwi ch + Set Const (Cheese);

Sandwi ch : = Sandwi ch + Set_Const (Oni on) ;

Put (" Contents of sandwich are : ");

Put (Sandwi ch); New_Li ne;

Put (" Nunmber of ingredients is : ");

Put (Menbers(Sandwi ch)); New Line;

nul | ;
end Mai n;

Note: The instantiation of the class Cl ass_Set _Sandwi ch uses the default definitions of > and < taken
from the environment.
An instantiation of a classwhich isinherited from Cont r ol | ed must be at thelibrary level.

which when run, will produce the following results:

Contents of sandwi ch are : (CHEESE, ONI ON)
Nurmber of ingredients is : 2

17.8 Salf-assessment

° Wheat is the purpose of an iterator?

° When inheriting from Cont r ol | ed, the user can provide the following procedures:
Finalize,Initialize,andAdj ust.
What is the purpose of these procedures?

° If A and B are controlled objects, what happens when the assignment:
A .= B;
is made?
) What is the difference between a deep and a shallow copy?

O M A Smith - May not be reproduced without permission

272 Containers

) What are the semantics of an assignment in Adafor the following assignments:
(@ The assignment of an instance of anl nt eger ?
(b) The assignment of an instance of alinked list?
) With the container Cl ass_Li st , what would be the effect of using an iterator to the container when

the storage for the container object has gone out of scope?

) What should happen to the iterator when an item is added to a container on which it isiterating?

17.9Exercises

Construct the following class:

° Cl ass_Better_Set
A classto implement a better set. A set isan ordered collection of unique items. The operations allowed
on aset are:
) Forming the intersection of two sets.
) Forming the union of two sets.
) Forming the set difference of two sets.
) Testing if an element is a member of the set.

O M A Smith - May not be reproduced without permission

18 Input and output

This chapter describes how input and output of objects other than Fl oat, | nt eger or Char act er
may be performed.

18.1 Theinput and output mechanism

In Ada input and output operations are strongly typed. This can cause initial problems as only a mechanism for
inputting or outputting instances of::

° Character andString Ada. Text _lo
° I nt eger Ada. I nteger_Text _io
° Fl oat Ada. Fl oat _Text | o

are explicitly provided. The full definition of these packagesin given in Appendix C.
The package Ada. Text _| o contains generic packages for outputting Fl oat , | nt eger, Stri ng, Fi xed
or Enumer at i on types. For example, to output instances of the following types:

type Menory is range 0 .. Max_Mem -- I nt eger
type Cpu is (164, 132, PowerPc); - - Enum
type M ps is digits 8 range 0.0 .. Max_M ps; - - Fl oat
type Clock is delta 0.01 range 0.0 .. Max_C ock; --Fixed

the following packages would need to be instantiated:

package
package
package
package

Cass_ Memlo
Class_Cpu_lo
Class_Mps_lo
Class_Cock_Ilo

new Ada. Text | o. I nteger_|o(Menory);
new Ada. Text _|l o. Enunerati on_I o(Cpu) ;
new Ada. Text | o. Fl oat _| o(M ps);

new Ada. Text _| o. Fi xed_I o(Cl ock) ;

Note:

Each of the generic packages has asits generic parameter the type that is to be output.

O M A Smith - May not be reproduced without permission

274 Input and output
18.1.1 Putting it all together

The above generic packages are used in the following program that prints out details about the internal
specification of a CPU:

wi th Ada. Text | o;
use Ada. Text _lo;
procedure Main is

Max_Mem : constant := 4096; -- M
Max_M ps : constant := 12000. 0; -- M ps
Max_d ock . constant := 4000.0; -- O ock
type Menory is range 0 .. Max_Mem - - I nt eger
type Cpu is (164, 132, PowerPc); - - Enum
type M ps is digits 8 range 0.0 .. Max_M ps; - - Fl oat
type Clock is delta 0.01 range 0.0 .. Max_Cl ock; --Fixed
Mc_Mem : Menory; --Mai n nmenory

Mc_Cpu : Cpu; --Type of CPU

Mc_M ps . M ps; --Raw M PS

Mc_Cl ock . O ock; --Cl ock frequency

package Class_Memlo is new Ada. Text_lo.Integer_Ilo(Menory);
package C ass_Cpu_lo i s new Ada. Text _| o. Enuneration_l o(Cpu) ;
package Cass_Mps_lo is new Ada. Text_lo. Fl oat _| o(M ps);
package C ass_Clock_lo i s new Ada. Text _I| o. Fi xed_l o(C ock);

The body of the procedureillustrated below writes out details about the computer.

begi n
decl are
use Class_Memlo, Cass Mps_lo, Class_Cock |lo, dass_Cpu_lo;
begi n
Mc_Mem = 512; Me_Cpu = | 64;
Mc_M ps : = 3000. 0; Mc_C ock := 1000. 0;

Put ("Menory:"); Put(Mc_Mem); New_Li ne;

Put("CPU :"); Put(Mc_Cpu); New_Li ne;
Put("Mps :"); Put(M_Mps); New Line;
Put ("Clock :"); Put(Mc_C ock); New_Line;
Put ("Mermory:"); Put(Mc_Mem Wdth=>3); New_Line;
Put("CPU :"); Put(Mc_Cpu, Wdth=>7, Set=>Upper_Case);
New_Li ne;
Put("Mps :"); Put(Mc_Mps, Fore=>3, Aft=>2, Exp=>0);
New Li ne;
Put ("dock :"); Put(M_O ock, Fore=>3, Aft=>2, Exp=>0);
New_Li ne;
end;
end Main;

When compiled and run the output from this program is as follows:

Menory: 512

CPU :164

Mps : 3.0000000E+03
Cl ock : 1000. 00
Menory: 512

CPU :164

M ps :3000.00

Cl ock :1000. 00

O M A Smith - May not be reproduced without permission

Input and output 275
18.2 Reading and writing to files

The following program copies input typed in at a terminal to the file named fil e. txt. The object Fd is
associated with the newly created filef i | e. t xt and isused asafiledescriptor in all writing to the text file.

with Text _Io;
use Text_|o;
procedure Main is
Fd : Text_lo. File_Type; --File descriptor
Fil e_Nane: constant String:= "file.txt";--Nane
Ch : Character; --Character read
begi n
Create(File=>Fd, Mdde=>CQut_File, Nane=>File_Nane);
while not End_O _File |oop --For each Line
whil e not End_O _Line | oop --For each character
Get (Ch); Put(Fd, Ch); --Read / Wite character
end | oop;
Ski p_Li ne; New_|line(Fd); --Next line / new line
end | oop;
Cl ose(Fd);
exception
when Name_Error =>
Put (" Cannot create " & File_Nanme); New_Line;
end Mai n;
Note: The exception Nanme__Er r or isgenerated if the file cannot be created.
Thedatainthefilefi | e. t xt isread by the following program, which copies the contents of the file to the
terminal:
with Text _| o;
use Text 1o;
procedure Main is
Fd : Text_lo. File_Type; --File descriptor
Fil e_Nane: constant String:= "file.txt";--Nanme
Ch : Character; --Character read
begi n
Open(Fil e=>Fd, Mbde=>In_File, Name=>Fil|e_Name);
while not End_O _Fil e(Fd) | oop --For each Line
whil e not End_Of _Line(Fd) | oop --For each character
Get (Fd, Ch); Put(Ch); --Read / Wite character
end | oop;
Ski p_Li ne(Fd); New_Li ne; --Next line / new line
end | oop;
Cl ose(Fd);
exception
when Name_Error =>
Put (" Cannot open " & File_Nanme); New_Line;
end Mai n;
Note: The exception Nanme__Er r or isgenerated if the file cannot be opened.

O M A Smith - May not be reproduced without permission

276 Input and output

The following program appends instances of Nunber, one of the integer types to the end of the file
file.txt:

with Text 1o;
use Text_Io;
procedure Main is
type Number is range 1 .. 10;

Fd : Text_lo. File_Type; --File descriptor

File_Nane: constant String:= "file.txt";--Nanme

package Pack_Nunber_lo i s new Text_lo.Integer_lo(Nunber);
begi n

pen(Fil e=>Fd, Mbde=>Append_File, Nanme=>File_Nane);

for I in Number | oop

Pack_Nunber lo.Put(Fd, |); New_Line(Fd);

end | oop;

Cl ose(Fd);
exception

when Name_Error =>

Put (" Cannot append to " & File_Nane); New_Line;
end Mai n;

18.3 Reading and writing binary data

Any instance of atype may be read and written to afile using the package Ada. Sequent i al _i 0. By using this
package, binary images of objects may be read and written. For example, the following code writes instances of
the data structure Per son to the file peopl e. t xt . Firstly the Package_Types defines the data structure
Per son used to represent an individual person.

package Pack_Types is
Max_Chs : constant := 10;
type Gender is (Fenale, Male);
type Height _Cmis range 0 .. 300;

type Person is record

Name : String(1 .. Max_Chs); --Nane as a String
Hei ght : Height_Cm:= 0; --Height in cm
Sex . Gender; --Gender of person
end record;
type Person_Index is range 1 .. 3;
subt ype Person_Range is Person_Il ndex;
type Person_Array is array (Person_Range) of Person;

end Pack_Types;

O M A Smith - May not be reproduced without permission

Input and output 277

Then the following example program writes instance of Per son tothefilepeopl e. t xt .

with Text_lo, Pack_Types, Sequential _Io;
use Text_lo, Pack_Types;
procedure Main is
Fil e_Nane: constant String:= "people.txt";--Nanme
People : Person_Array;
package |l o is new Sequential _|o(Person);
begi n
decl are
Fd . lo.File_Type; --File descriptor
begi n
Peopl e(1) := (Nane=>"M ke ", Sex=>Mal e, Hei ght =>183) ;
Peopl e(2) := (Nane=>"Corinna ", Sex=>Female, Height=>171);
Peopl e(3) := (Nane=>"Mranda ", Sex=>Fenal e, Height=> 74);
lo.Create(File=>Fd, Mdde=>lo.Qut_File, Name=>File_Nane);
for |1 in Person_Range |oop
lo.Wite(Fd, People(l));
end | oop;
I 0. d ose(Fd);
exception
when Nane_Error =>
Put (" Cannot create " & File_Nane); New_Line;
end;
end Mai n;

Note: The package Ada. Text _| o isused to provide the definition of the exceptionName_Err or .
When using the generic package Ada. Sequenti al _| o, theproceduresr ead andwr i t e are used

to performtheinput and output operations.

To read back the data written to thefilepeopl e. t xt thefollowing example program is used:

with Text _lo, Pack_Types, Sequential _|o;
use Text_lo, Pack_Types;
procedure Main7 is

Fil e_Nane: constant String:= "people.txt";--Nanme

Peopl e : Person_Array;

package 1o is new Sequential _|o(Person);

begi n

decl are
Fd : lo.File_Type; --File descriptor

begi n
lo. Open(File=>Fd, Mode=>lo.In_File, Nanme=>File_Nane);
for 1 in Person_Range | oop

| 0. Read(Fd, People(l));
Put (Peopl e(l).Nane);
Put (Hei ght _Cnmi | nage(Peopl e(l). Height));
i f People(l).Sex = Male then
Put (" Male");
el se
Put (" Fenale");
end if;
New_Li ne;
end | oop;
| 0. A ose(Fd);
exception
when Nane_Error =>
Put (" Cannot open " & File_Name); New_Line;
end;
end Main7;

O M A Smith - May not be reproduced without permission

278

Input and output

Which when run would print the following results:

M ke 183 Mal e
Cori nna 171 Femual e
M r anda 74 Fenml e

18.4 Switching the default input and output streams

It is possible to switch the default input or output stream to another stream using the following proceduresin the
package Ada. Text _| o. The effect is to change the source or sink from which input and output will come from
or go to when using the normal input and output proceduresput and get without aFi | e parameter.

Procedure Sets the default
Set_Input (AleiinFle Type) Input file descriptor.
Set QutPut(FleiinFle Type) Output file descriptor.
Set Eror (AleiinFle Type) Error file descriptor.

As the file descriptor is of type limited private, it may not be directly assigned. However, an access value of
the file descriptor can be saved. The following functions return an access value of the standard input and output
file descriptors:

Function Returnsthe access
Sandard_Input return Fle_Access; Value of the input file descriptor.
Sandard Qutput return Fle_Access; Value of the output file descriptor.
Sandard Error return Fle_Access; Value of the error file descriptor.

18.4.1 Putting it all together

The program first saves an access value to the original default input stream. Then it switches the default input
stream to bethefile fi |l e. t xt . After reading and printing the contents of this file the default, input stream is

switched back toits original value and the contents of the stream are read and written out.

with Ada. Text _|o; use Ada.Text_Ilo;
procedure Main is

Fd : Ada. Text _lo. File_Type; --File descriptor
P_St Fd : Ada. Text_lo.File_Access; --Access value of Standard
Ch : Character; --Current character
begi n
P_St _Fd := Standard_I nput; -- Acess val ue of standard fd

pen(Fil e=>Fd, Mode=>In_File, Name=>"file.txt");
Set _Input(Fd);

while not End_O _File | oop --For each Line
whi l e not End_Of _Line | oop -- For each character
Get (Ch); Put(Ch); -- Read / Wite character
end | oop;
Ski p_Li ne; New_Li ne; -- Next line / newline
end | oop;
Cl ose(Fd); --Close file
Set _lnput(P_St_Fd.all);
while not End_O _File |oop -- For each Line
whil e not End_Of _Line |oop -- For each character
Get (Ch); Put(Ch); --Read / Wite character
end | oop;
Ski p_Li ne; New_Li ne; --Next line / new |line
end | oop;
end Mai n;
Note: Notice how al | has been used to de-reference the access value when using the procedure
Set _I nput.

O M A Smith - May not be reproduced without permission

Input and output 279

18.5 Salf-assessment

° What isthe purpose of the package Ada. Sequenti al _i 0?

° How can you detect if afile does not exist in Ada?

) How might input and output in Ada be simplified for the novice user?
) How can you write an instance of arecord to afile?

18.6 Exercises

Construct the following program:

e Copy
A program to copy afile. A user should be able to run your program by typing:

new copy old file newfile

° Upper case
A program to convert afilein upper and lower case to all upper case. A user should be able to run your

program by typing:

to_upper _case file

Note: The program should create an intermediate file then delete the original file and rename the
intermediate file to the original file name. This operation should be safe.

O M A Smith - May not be reproduced without permission

19 Persistence

This chapter shows how to create persistent objects. A persistent object will have a life-time beyond the
life-time of the program that created it.

19.1 A persistent indexed collection

The life-time of an object in Ada depends on its declaration, but its life-time will never exist beyond that of the
program. For an object to exist beyond the life-time of an individual execution of a program requires the object’s
state to be saved to disk, allowing the object’s state to be restored in another program. The above process makes
the object persistent. Normally this processisvisible to a programmer.

For example, a program to print the IDC (International Dialling Code) for countries selected by a user could
use a persistent object to hold IDC details for individual countries. These details could be amended by the user of
the program and the changes would be retained for subsequent re-running of the program.

A program of this kind could uses the persistent object Tel _Li st that is an instance of the class Pi ¢
(Persistent Indexed Collection). The class Pi ¢ implements a persistent indexed collection of data items. The
index can be an arbitrary value as can the data stored with the index.

The responsibilities of the classPI Care asfollows:

M ethod Responsibility

Initialize |[Initializethe object.
When the object is initialized with an identity, the state of the
named persistent object isrestored into the object.

Fi nalize If the object has an identity, save the state of the object under
this name.

Add Add anew dataitem to the object.

Extract Extract the data associated with an index.

Updat e Update the data associated with an index.

Set _Nane Set the identity of the object.

Get _Name Return the identity of the object.

The package Pack_t ypes contains string definitionsfor the Count r y and the | DC.

package Pack_Types is

subtype Country is String(1 .. 12); --Country

subtype ldc is String(1 .. 6); --International Dialling Code
end Pack_Types;

The ClassTel _Li st isaninstantiation of the generic classPi c.

with C ass_Pic, Pack_Types;
use Pack_Types;
pragma El aborate Al (dass_Pic);
package C ass_Tel List is new dass_Pic(Country, Ildc, ">");

Note: The generic class Pi ¢ isdescribed in Section 19.2.

O M A Smith - May not be reproduced without permission

Persstence 281

A program to implement this telephone aid would be as follows:

with Ada. Text _l o, Pack_Types, C ass_Tel _List;
use Ada. Text _lo, Pack_Types, O ass_Tel List;
procedure Main is
Tel _List : Pic;
Acti on . Character;
Nane . Country;
Tel : ldc;
begi n
Initialize(Tel _List, "tel list.per");
while not End_O _File | oop
begin
Get (Action); --Action to perform
case Action is
when '+ => - - Add
Get(Name); Get(Tel);
Add(Tel _List, Name, Tel);
when '=' => --Extract
Get (Name);
Extract (Tel _List, Nane, Tel);
Put("IDC for "); Put(Nane);
Put(" is "); Put(Tel); New_Line;
when '*' => --Updat e
Get(Name); Get(Tel);
Updat e(Tel _List, Nane, Tel);

when ot hers => --Invalid action
nul | ;
end case;
exception
when Not There => --Not there
Put ("Name not in directory"); New_Line;
when Mai nists => --Exi sts
Put ("Nane already in directory"); New Line;
end;
Ski p_Li ne;
end | oop;
end Mai n;

Note: When the object Tel_List isinitialized it is named with an identity which is the file used to hold its
saved state. Using this file the state of the object can be restored so allowing the object to have life
beyond a single programrun.

O M A Smith - May not be reproduced without permission

282 Persistence

19.1.1 Putting it all together

When compiled with the class Tel _| i st and the package Pack _t ypes an example interaction using the
program would be as follows:

=K -- Previously stored
IDC for WK is 44
New Zeal and 64 -- Add I DC for New Zeal and
Sweden 46 -- Add I DC for Sweden
Por t ugal 3510 -- Invalid I DC
=Por t ugal -- Lookup IDC for Portugal
| DC for Portugal is 3510
Por t ugal 351 -- Try to add new I DC for Portugal
Name already in directory
*Por t ugal 351 -- Correct invalid |IDC
=Por t ugal -- Lookup I'DC for Portugal
I DC for Portugal is +351

Note: The user’sinput isindicated by bold type.
The actions allowed are:
+ Add country and IDC to collection
Extract IDC for country
Change IDC for existing country

* 1

19.1.2 Setting up the persistent object

Thefollowing program creates the initial persistent collection:

with Ada. Text _lo, Cl ass_Tel _List;

use Ada.Text lo, O ass_Tel List;

procedure Main is
Tel _List : Pic;

begi n
Put ("Creating Tel ephone list"); New_Line;
Set _Nane(Tel _List, "tel |ist.per");
Add(Tel _List, "Canada B o R
Add(Tel _List, "USA "+ R
Add(Tel _List, "Netherlands ", "+31);
Add(Tel _List, "Belgium ", "4+32 "),
Add(Tel _List, "France " "+33 R
Add(Tel _List, "G braltar ", "4+350);
Add(Tel _List, "lIreland ", "+353 ");
Add(Tel _List, "Switzerland ", "+41 "),
Add(Tel _List, "WK ", "+44);
Add(Tel _List, "Denmark ", "+45 "),
Add(Tel _List, "Norway "Lt HAT "),
Add(Tel _List, "Germany " "+49 R
Add(Tel _List, "Australia ", "+61 ")
Add(Tel _List, "Japan ", "+81 R

end Mai n;

19.2TheclassPl C

The class Pi ¢ (Persistent Indexed Collection) implements an indexed collection as a binary tree. An identity is
given to an instance of the classPI C so that when the object’s life-time ends, its state will be saved to disk. The
file name used to save the state is the object’ sidentity.

The specification for the classPI Cisasfollows:

O M A Smith - May not be reproduced without permission

Persistence

283

with Ada. Strings. Unbounded, Ada.Finalizati
use Ada. Strings. Unbounded, Ada. Finalizati
generic

type Index is private;

type Data is private;

with function ">"(F:in |ndex;
package Class_Pic is

on;
on;

record
record

--I ndex for
--Data for

S:in Index) return Bool ean;

end record;

function Find(The:in Subtree; |

end d ass_Pic;

2in | ndex)
procedure Rel ease_Storage(The:in out Subtree);

Not There, Mainists, Per Error exception; --Raised Exceptions
type Pic is newlLimted_Controlled with private;
procedure Initialize(The:in out Pic);
procedure Initialize(The:in out Pic; Id:in String);
procedure Finalize(The:in out Pic);
procedure Discard(The:in out Pic);
procedure Set _Nane(The:in out Pic; Id:in String);
function Get_Nanme(The:in Pic) return String;
procedure Add(The:in out Pic; l:in Index; Diin Data);
procedure Extract(The:in out Pic; l:in Index; D:in out Data);
procedure Update(The:in out Pic; l:in Index; D:in out Data);
private
type Leaf; --Index + Data
type Subtree is access Leaf; --
type Pic is new Linmted_Controlled with record
Tr ee : Subtree := null; -- Storage
Qoj _Id : Unbounded_String; -- Nanme of object

return Subtree;

Note:

leaf can be declared. Thetypel eaf isfully declared in the package body.

Thetwo generic parameters, | ndex and Dat a represent the type of the index used to access the stored data.
Asthis generic class will need to compare indices for ">" to establish the position of an index in the binary tree, a
definition for ">" must be provided by the user of the class. Remember, the index may be of a type for which the
operation ">" is not defined between two instances of | ndex. This forces the user of the package to provide

implicitly or explicitly an implementation for the comparison function ">".

The implementation of the class Pi ¢ uses the data structure El enent to hold the index and the data
associated with the index. The data structure Leaf represents aleaf of the binary tree which is composed of a left

and right pointer plusthe datastructure El enent .

The declaration of the type | eaf isa forward declaration so that the type Subt r ee, a pointer to a

wi th Unchecked _Deal | ocati on,
package body Class_Pic is

end record;

Sequenti al _I o;

node

type Element is record --
S I ndex: | ndex; --The | ndex
S Data : Data; --The Data
end record;
type Leaf is record --
Left Subt r ee; --Possible left
Rec El enent ; --Index + data
Ri ght Subt r ee; --Possibl e right node;

O M A Smith - May not be reproduced without permission

284 Persistence

For example, after the following datais added to the data structure:

Country IDC
Canada +1
USA +1
Belgium +32
Germany +49

the resultant tree would be asillustrated in Figure 19.1.

Tree Obj_Id
Rec

Left S _Index S Data Right

I Canada I +1 I/ I

| Germany

Figure 19.1 Binary tree holding four dataitems.
Therulesfor adding itemsto abinary tree are:
If the current pointer to aleaf isnul | :

® |nserttheitem at this point.
If the current pointer to aleaf isnotnul | .

® |f theindex of theitem to be inserted is|ess than the current index, then recursively call add on the

|eft hand subtree.

® |f theindex of theitem to beinserted islarger than the current index, then recursively call add on the

right hand subtree.

For example, if the IDC of Norway were added, the resultant tree would be asillustrated in Figure 19.2.

Tree Obj_Id
Rec

Left S _Index S_Data Right

I Canada I +1 I/ I
+32 | usa [+1 [« |
|Germany | +49 |
INorway I +47 I ° I

Figure 19.2 Binary tree after adding the country Norway.

O M A Smith - May not be reproduced without permission

Persstence 285

The process to add the country Norway to thetreeis:

Step Current leaf contents Action
1 Canada Try inserting at RHS |eaf.
2 USA Try inserting at LHS leaf.
3 Germany Try inserting at RHS |eaf.
4 Empty Insert new leaf (Norway).

The package sequent i al _i o is used to hold the saved state of the binary tree. This is simply a file of
records of type El ement . An instantiation of this package i o is created to allow input and output to take place
on instances of El enment .

package |l o is new Sequential _|o(Elenent);

Theprocedurei ni ti al i ze setsthe binary treeto adefined empty state.

procedure Initialize(The:in out Pic) is
begi n

The. Tree : = nul | ; --No storage
end Initialize;

Note: This is not necessary as the elaboration of an instance of the class will setthetree tonul | asits
initial value.

Theprocedurel ni ti al i ze iscalled to restore the state of the binary tree from afile. The second parameter
totheprocedurel ni ti al i ze isthe object’ sidentity. The state of the object is held in afile with the same name
as the object’s name. This procedure reads in the stored index and data items and uses the procedure Add to
rebuild the tree. The rebuilding of the tree re-creates an exact copy of the structure of the saved tree. Thisis dueto
the way the index and data items were stored. The process of saving the state of the binary tree isimplemented in
the procedure Fi nal i ze.

procedure Initialize(The:in out Pic; Id:in String) is

Per : lo.File_Type; --File descriptor
Cur : El enent; --Persistent data record el enent
begi n
Set _Name(The, Id); --Nanme obj ect
lo.Open(Per, lo.In_File, 1d); --Open saved state
while not lo.End_O _File(Per) loop --Restore saved state

| 0. Read(Per, Cur);
Add(The, Cur.S Index, Cur.S Data);

end | oop;
lo.Cl ose(Per);

exception --Return real exception
when others => raise Per Error; -- as sub code

end Initialize;

The procedure Fi nal i ze saves the state of an object which has an identity just before the object is
destroyed. The datafrom the binary tree is saved in the order:

° Item held in the current node.
° The contents of the |eft-hand side.
) The contents of the right-hand side.

This unusual ordering saves the index and data item of the leftmost leaves nearest the root first. Thus, when the
datais restored the structure of the tree will be the same. For example, if the data structure, illustrated in Figure
19.2 were saved, then the order of saving the datawould be;

O M A Smith - May not be reproduced without permission

286 Persistence

Canada, Belgium, USA, Germany, Norway.

When added to abinary tree, thiswould recreate the tree structure present in the original object.

procedure Finalize(The:in out Pic) is

Per : lo.File_Type; --File descriptor
procedure Rec_Finalize(The:in Subtree) is --Save state
begin
if The /= null then -- Subtree save as
lo.Wite(Per, The.Rec); -- Item
Rec_Finalize(The.Left); -- LHS
Rec_Finalize(The.Right); -- RHS
end if;
end Rec_Finali ze;
begi n
if To_String(The.Qoj _Id) /="" then --If save state

lo.Create(Per, lo.Qut_File,
To_String(The.Obj _Id));

Rec_Finalize(The.Tree);

| 0. Cl ose(Per);

end if;
Rel ease_St orage(The. Tree);

exception --Return real exception
when others => raise Per_Error; -- as sub code

end Finalize;

The procedure Di scar d disassociates the object identity from the object and resets the state of the tree to

empty. This procedure should be used when the object’ s state is not required to be saved to disk.

procedure Discard egin

Set _Nanme(The, ""); --No nane

Rel ease_St orage(The. Tree); --Rel ease storage
end Di scard;

procedure Set_Nane(The:in out Pic; Id:in String) is

begi n
The. Obj _Id := To_Unbounded_String(ld); --Set object nane
end Set _Nane;
function Get_Nanme(The:in Pic) return String is
begi n
return To_String(The.Obj Id); --Nane of object

end Get _Nane;

O M A Smith - May not be reproduced without permission

Persstence 287

The procedure Add uses the classic recursive mechanism for adding dataitems to a binary tree. The processis
to add the dataitem to an empty leaf of the tree. If thisis not possible then the current leaf’ s dataitem is compared
to the data item to be inserted. Depending on how the comparison collates the process is recursively called on
either the left or the right-hand subtree.

procedure Add(The:in out Pic; I:in Index; Diin Data) is
procedure Add_S(The:in out Subtree; I:in Index; Diin Data) is
begin
if The = null then
The := new Leaf' (null, Elenent'(I,D), null);
el se
if I = The.Rec.S_Index then --Index all ready exists

rai se Maini sts;
elsif | > The.Rec.S Index then --Try on RHS

Add_S(The.Right, I, D);
el se --LHS
Add_S(The. Left, I, D);
end if;
end if;
end Add_S;
begi n
Add_S(The.Tree, |, D);
end Add;

The procedures Ext ract and Updat e respectively read a data value and update a data value using the
supplied index. Both these procedures use the function Fi nd to find the leaf in which the dataitem to be accessed

isheld.

procedure Extract(The:in out Pic; l:in Index; D:in out Data) is
Node |s : Subtree;

begi n
Node_|s := Find(The.Tree, |); --Find node with iey
D := Node_ls. Rec. S_Dat a; --return data

end Extract;

procedure Update(The:in out Pic; |l:in Index; D:in out Data) is
Node_|s : Subtree;

begi n
Node_|s := Find(The.Tree, |); --Find node with iey
Node |s.Rec. S Data : = D --Update data

end Updat e;

O M A Smith - May not be reproduced without permission

288 Persistence

The procedure Fi nd uses a recursive descent of the tree to find the selected index. If the index is not found,
then the exceptionNot _Ther e israised.

function Find(The:in Subtree; l:in Index) return Subtree is
begi n
if The = null then raise Not_There; end if;
if I = The. Rec. S I ndex then
return The; - - Found
el se
if I > The. Rec. S_| ndex
then return Find(The.R ght, |); --Try RHS
el se return Find(The.Left, |); --Try LHS
end if;
end if;
end Fi nd;

Asthetreeisbuilt using dynamic storage, the storage must be released. The procedure Rel ease_St or age
carries out this task:

procedure Dispose is
new Unchecked_Deal | ocati on(Leaf, Subtree);

procedure Rel ease_Storage(The:in out Subtree) is

begi n
if The /= null then --Not enpty
Rel ease_Storage(The. Left); --Free LHS
Rel ease_Storage(The.Right); --Free RHS
Di spose(The); --Di spose of item
end if;
The := null; --Subtree root NULL

end Rel ease_St or age;

end d ass_Pic;

Note: The implicit garbage collector could be used, but this would only be called when the instance of the
classPi ¢ went out of scope. If this object is serially re-used then storage used by the program could
become excessive.

O M A Smith - May not be reproduced without permission

20 Tasks

This chapter describes the Ada task mechanism that allows several threads of execution to take placein a
program simultaneously. This facilitates the construction of real-time programs that can process messages
generated from multiple sourcesin an orderly manner.

20.1 Thetask mechanism

A program may have sections of code that can be executed concurrently as they have no interaction or
dependency. For example, the calculation of the factorial of an integer number and the determination of whether a
number is prime, may be done concurrently as separate threads of execution. This can be implemented by means
of atask type within a package. When elaborated, an instance of the task type will execute as a separate thread.
Communication between the executing threads is performed using the entry construct which allows a rendezvous
to be made between two concurrently executing threads. At the rendezvous, information may be interchanged
between the tasks.

The specification for two packagesis given below. The first package defines atask to calculate the factorial of
apositive number and the second determines whether or not a positive number is a prime.

package Pack_Factorial is

task type Task_Factorial is - -Specification
entry Start(F:in Positive); - -Rendezvous
entry Finish(Result:out Positive); --Rendezvous

end Task_Factori al ;
end Pack_Factori al ;

package Pack |Is_A Prinme is

task type Task_Is_Prine is - -Specification
entry Start(P:in Positive); - -Rendezvous
entry Finish(Result:out Boolean); --Rendezvous

end Task_|s_Prime;
end Pack |Is A Prine;

Note: Therendezvous St ar t isused to pass data to the task and the rendezvous Fi ni sh isused to pass the
result back.

A task is created using the normal Ada elaboration mechanism. To create an instance of the task

Task_Factori al thefollowing declaration isused:

Thread_1 : Task_Factori al ;

O M A Smith - May not be reproduced without permission

290 Tasks

The task will start executing as an independent thread as soon as the block surrounded by the declaration is
entered. A rendezvous with this executing task to passit the number 5, iswritten as follows:

Thread_1. Start (5); --Start factorial calculation

Note: This can be thought of as sending the message St ar t with a parameter of 5tothetask Thread_1.

The tasks described above may be used as follows:

with Ada. Text _| o, Ada.lnteger_Text_lo,
Pack Factorial, Pack |Is A Prineg;
use Ada.Text _|o, Ada.lnteger_Text _|o,
Pack_Factorial, Pack_ls_A Prineg;
procedure Main is
Thread_1 : Task_Factori al ;
Thread_2 : Task_Factori al ;
Thread 3 : Task Is Prine;
Factorial: Positive;

Prine . Bool ean;

begi n
Thread_1. Start(5); --Start factorial calculation
Thread_2. Start(7); --Start factorial calculation
Thread_3. Start (97); --Start is_prinme calculation

Put ("Factorial 5 is ");
Thread_1. Fi nish(Factorial); --Obtain result

Put (Factorial); New_Line;

Put ("Factorial 7 is ");
Thread_2. Fi ni sh(Factorial); --Obtain result
Put (Factorial); New_Line;

Put("97 is a prime is ");
Thread_3. Finish(Prime); --Obtain result
if Prime then --
Put (" True"); -- and print
el se
Put (" Fal se") ;
end if;
New_Li ne;
end Mai n;

Note: The tasks start executing as soon as the begi n of the block in which they are elaborated is entered.
The rendezvous point St ar t isused to control this wayward behaviour.

Thisisin essence a client-server relationship between the main program, the client, which requests a service
from the server tasks.

20.1.1 Putting it all together

When run, thiswould deliver the following results:

Factorial 5 is 120
Factorial 7 is 5040
97 is a prine is True

O M A Smith - May not be reproduced without permission

Tasks 291

The execution of the above program can be visualized as Figure 20.1

IThread_l {Factorial (5&

Thread_2 { Factorial(7)}
| d

l Thread_3 {Pri me(97)L|

Main program thread

Figure 20.1 lllustration of active threadsin the above program.

Once started, each of the threads will execute concurrently until the Fi ni sh rendezvous is encountered,
which isused to deliver the result to the initiator of the tasks.

Note: The actual implementation of the concurrency will depend on the underlying architecture, both

software and hardware, of the platform on which the programis executed.
20.1.2 Task rendezvous

The rendezvous mechanism is used for:

) synchronizing two separate threads so that information may be exchanged.
) synchronizing the execution of two threads.

A rendezvousis achieved by one task having anent r y statement and the other task performing a call on this
ent ry. For example, the code for arendezvous to pass a Posi t i ve number to the task object thr ead_1 the
code would be:

Main program (client) which Body of task Thread_1 (server)
elaboratesthreadl

accept Start(F:in Positive) do
Thread_1. Start(5); Factorial := F;

end Start;

To achieve this effect, one of the threads of control will be suspended until the other thread catches up. Then at
the rendezvous, data, in this case the number 5, is transferred between the tasks. The code betweendo and end is
executed with the client task suspended. After the code betweendo and end has been executed both tasks resume
their independent execution.

This rendezvous between the two tasks is illustrated in Figure 20.2 in which the main program task
rendezvous with an instance of thetask Fact ori al .

O M A Smith - May not be reproduced without permission

292 Tasks

rendezvous rendezvous
data
interchange Start(F:in Positive) d
Th 1. accept ! Zin [¢]
read 1.Start(5) Factorial := F;
end Sat;
—

i resume ¢ resume

Figure 20.2 lllustration of arendezvous.

Other variations on the rendezvous are:

Variation Client Server task

No information passed. Thread_1. Start; accept Start;

No information passed but Thread_1. Start; accept Start do
Thr ead_1 executes statements St at ement s;
during the rendezvous. end Start;

20.1.3 Thetask’s implementation

In the body of the package Pack_Fact ori al shown below, thetask Task_Fact ori al usestwo rendezvous

points:
° Start to obtain the datato work on.
° Fi ni sh to deliver the result.

When the task’s thread of control reaches the end of the task body, the task terminates. Any attempted

rendezvous with aterminated task will generate the exception Task_Er r or .

package body Pack_Factorial is
task body Task_Factorial is - -l npl ement ati on
Factorial : Positive;
Answer : Positive := 1;
begi n
accept Start(F:in Positive) do --Factorial
Factorial := F;
end Start;
for I in 2 .. Factorial |oop --Cal cul ate
Answer = Answer * |;
end | oop;
accept Finish(Result:out Positive) do --Return answer
Result := Answer;
end Fini sh;
end Task_Factori al ;
end Pack Factori al ;

O M A Smith - May not be reproduced without permission

Tasks 293

Likewise, the task Task_|s_Pri ne in the package Pack |s_A Pri ne receives and delivers data to
another thread of control.

package body Pack _Is_ A Prine is
task body Task Is Prine is - -1 npl ement ati on
Prinme : Positive;
Answer: Bool ean : = True
begi n
accept Start(P:in Positive) do --Factorial
Prime := P
end Start;
for 1 in 2 .. Prime-1 |oop --Calcul ate
if Prime reml = 0 then
Answer := Fal se; exit;
end if;
end | oop;
accept Finish(Result:out Boolean) do --Return answer
Result := Answer;
end Fini sh;
end Task_ls_Prine;
end Pack_Is_A Prineg;

20.2 Parametersto atask type

In the previous example, the rendezvous St art is used to pass initial values to the task. This can be done
explicitly, when the task is created by using a discriminated task type. However, the discriminant must be a
discrete type or access type. For example, the specification of the task Task_Fact ori al can be defined as

follows:

package Pack_Factorial is
task type Task_Factorial (F:Positive) is -- Speci fication
entry Finish(Result:out Positive); - - Rendezvous
end Task_Factori al ;
end Pack_Factorial ;

Then an instance of the task can be elaborated as follows:

Thread_1 : Task_Factorial (7); --Task is

The body of the task type is now:

package body Pack_Factorial is

task body Task_Factorial is -- | npl enent ati on
Answer . Positive := 1;
begi n
for 1 in 2 .. Floop --Calcul ate
Answer = Answer * |[;
end | oop;
accept Finish(Result:out Positive) do --Return answer
Result := Answer;
end Fini sh;

end Task_Factori al ;
end Pack_Factorial ;

Note: The discriminant to the task type is not specified in the body.

O M A Smith - May not be reproduced without permission

294 Tasks

20.2.1 Putting it all together

Using the new definition of the task type in the package Pack _fact ori al the following code can now be
written:

with Ada. Text _l o, Ada.lnteger_Text_lo, Pack_Factorial;
use Ada.Text _lo, Ada.lnteger_Text_lo, Pack_Factorial;
procedure Main is

Num : Positive;
begi n

Num : = 7;

decl are
Factorial : Positive; - - Answer
Thread_1 : Task_Factorial (Num; --Task is
begi n
--Do sonme other work as well
Put ("Factorial "); Put(Num); Put(" is ");

Thread_1. Fini sh(Factorial); --CObtain result
Put (Factorial); New_Line;
end,
end Mai n;

20.3 Mutual exclusion and critical sections

In many cases of real time working, sections of code must not be executed concurrently. The classic example is
the adding or removing of datain ashared buffer. For example, to perform a copy operation between two separate
devices a shared buffer can be used to even out the differences in response-time. This can be illustrated
diagrammatically as shown in Figure 20.3.

_}Reader @ -
task
Buffer
L1 1 I 1 1 1 |

Figure 20.3 Illustration of copy with abuffer to even out the differencesin read and write rates.

The problem is how to prevent both the read and write tasks accessing the buffer simultaneously, causing the
consequential corruption of indices and data. The solution isto have the buffer as an instance of a protected type.

O M A Smith - May not be reproduced without permission

Tasks 295
20.4 Protected type

In essence, an instance of a protected type is an object whose methods have strict concurrency access rules. A
protected object, an instance of a protected type, is composed of data and the procedures and functions that access
the data. The table below summarizes the concurrent access rules for procedures and functions in a protected

object.
Unit Commentary Access
procedure | A procedurewill only execute when no other Read and write.

units are being executed. If necessary the
procedure will wait until the currently executing
unit(s) have finished.

function A function may execute simultaneously with Read only.
other executing functions. However, afunction
cannot execute if aprocedureis currently
executing.

entry Like aprocedure but may also have abarrier Read and write
condition associated with the entry. If the barrier
condition isfalsethe entry is queued until the
barrier becomestrue.

20.5 I mplementation

The implementation of a program to perform an efficient copy using an in store buffer to even out differencesin
response rates can be implemented as two tasks and a protected object, asillustrated in Figure 20.4.

Reader -
@ ()

Put Get
Buffer

Figure 20.4 Copy implemented using two tasks and a protected object buffer.

Theresponsibilities of the components are as follows:

Name Object is Responsibilities
Task_Reader | Task Read data from the file and then pass the data to the buffer.
Note: Thetask will block if the buffer isfull.
Task_Witer | Task Take datafrom the buffer task and write the data to thefile.
Note: The task will block if there is no datain the buffer.
PT_Buf fer Prot ect ed | Serialize the storing and retrieving of data to and from a
type buffer.
Note: The blocking is achieved with a guard to the accept statement. This is described in the section on
guarded accepts.

O M A Smith - May not be reproduced without permission

296 Tasks

A package Pack_t ypes isdefined to allow commonly-used types to be conveniently kept together.

with Ada. Text _| o;
use Ada. Text _|o;
package Pack_Types is
type P_File_Type is access all Ada.Text _lo.File_Type;

Eot : constant Character := Character' Val (0);

0F . constant Character := Character' Val (15);

Queue_Si ze . constant := 3;

type Queue_No is new | nteger range 0 .. Queue_Si ze;
type Queue_I ndex is nmod Queue_Si ze;

subtype Queue_Range i s Queue_I ndex;
type Queue_Array is array (Queue_Range) of Character;
end Pack_Types;

Note: The above package is used to definethetype P_Fi | e_Type which is used by several other program
units.

The specification for the buffer protected typeisasfollows:

with Pack_Types;
use Pack_Types;
package Pack_Threads is
protected type PT_Buffer is -- Task type specification
entry Put(Ch:in Character; No_Mbore:in Bool ean);
entry Get(Ch:in out Character; No_More: out Bool ean);

private
El enent s : Queue_Array; --Array of elenents
Head . Queue_lndex := 0; - - | ndex
Tai | . Queue_l ndex := 0; - - | ndex
No I n_Queue : Queue_No = 0; -- Nunber in queue
Fin . Bool ean = Fal se; - - Fi ni sh;

end PT_Buffer ;

type P_PT Buffer is access all PT_Buffer ;

The Ada specification for the reader and writer tasks are as follows:

task type Task_Read(P_Buffer:P_PT _Buffer ;
Fd_In:P_File_Type) is
entry Finish;
end Task_Read;

task type Task_Wite(P_Buffer:P_PT_Buffer
Fd_Qut:P_File_Type) is
entry Finish;
end Task _Wite;
end Pack_Thr eads;

Note: To allow the reader and writer tasks to communicate with the buffer, a reference to the buffer protected
object is passed to these tasks. A reference to the buffer protected object has to be passed as a
protected object is of limited type.

The same strategy is used to passan instance of Fi | e_Type.

O M A Smith - May not be reproduced without permission

Tasks 297

The implementation of the above program is split into two procedures. The procedure Do_Copy does the
actual work of copying between the two files.

wi th Ada. Text _l o, Pack_Threads, Pack_Types;

use Ada. Text | o, Pack_Threads, Pack_Types;

procedure Do_Copy(Fromin String; To:in String) is
type State is (Open_File, Create File);

Fd_In . P_File_Type := new Ada. Text _lo. Fil e_Type;
Fd_Qut : P_File_Type := new Ada. Text_lo. File_Type;
Mbde . State := Open_File;

begi n
pen(File=>Fd_In.all, Mde=>In_File, Nane=>Fron;

Mode := Create_Fil e;
Create(Fil e=>Fd_CQut.all, Mde=>CQut_File, Name=>To);
decl are

Buffers : P_PT_Buffer := new PT_Buffer ;

Reader : Task_Read(Buffers, Fd_In);

Witer : Task Wite(Buffers, Fd_Qut);

begi n
Reader. Finish; Close(Fd_In.all); --Fini sh reader task
Witer.Finish; Cose(Fd_Qut.all); --Finish witer task
end;
exception

when Name_Error =>
case Mode is
when Open_File =>
Put (" Probl em opening file " & From); New_Line;
when Create File =>
Put ("Problem creating file " & To); New_Line;
end case;
when Taski ng_Error =>
Put ("Task error in main progrant); New_Line;
end Do_Copy;

Note: Explicit de-referencing of instancesof aFi | e_Type isachieved using. al | .
The procedure copy extracts the arguments for the copy operation.

with Ada. Text _l o, Ada. Command_Li ne, Do_Copy;
use Ada.Text | o, Ada. Command_Li ne;
procedure Copy is
begi n
if Argunent_Count = 2 then
Do_Copy (Argurent (1), Argunent(2));
el se
Put ("Usage: copy fromto"); New_Line;
end i f;
end Copy;

When a pointer to a protected type (for example, PT_Buf f er) is elaborated, no object is created. The
creation of an instance of the protected type PT_Buffer is performed usingnew as follows:

Buffers : P _PT Buffer := new PT Buffer

Note: As a protected object is limited, using an access value is one way of making the protected object visible
to several programunits.

O M A Smith - May not be reproduced without permission

298 Tasks

The implementation of the reader task isthen:

wi th Ada. Text | o;
use Ada. Text _lo;
package body Pack_Threads is

task body Task_Read is --Task i npl ementation
Ch . Character;
begi n

while not End_OF _File(Fd_In.all) |oop
while not End_OF _Line(Fd_In.all) Ioop

Get(Fd_In.all, Ch); --Get character
P _Buffer.Put(Ch, False); --Add to buffer
end | oop;
Skip_Line(Fd_In.all); --Next |ine
P _Buffer.Put(Cr, False); --New | i ne
end | oop;
P_Buffer.Put(Eot, True); --End of characters

accept Finish;
exception
when Taski ng_Error =>
Put ("Exception in Task read"); New_Line;
end Task_Read;

The rendezvousFi ni sh isused by the reader to indicate that there is no more data.

Note: Astasking errorsare not propagated beyond the task, a specific exception handler is used to detect this

eventuality.
The character constant Cr is used to indicate the newline character.

Similarly, the writer task isimplemented as follows:

task body Task Wite is --Task i npl ementation
Last . Bool ean : = Fal se; --No nore data
Ch . Character; --Character read
begi n
| oop
P_Buffer.Get(Ch, Last); --From buffer
exit when Last; --No nore characters
if Ch = C then
New_Li ne(Fd_Qut.all); --New line
el se
Put(Fd_Qut.all, Ch); --Character
end if;
end | oop;
accept Fini sh; --Fi ni shed
exception
when Taski ng_Error =>
Put ("Exception in Task wite"); New_Line;
end Task_Wite;

20.5.1 Barrier condition entry

The protected type uses one additional facility, that of a barrier entry. If the buffer becomes full, a mechanism is
needed to prevent further data being added. The barrier:

entry Put(Ch:in Character; No_Mre:in Bool ean)
when No_I n_Queue < Queue_Size is

O M A Smith - May not be reproduced without permission

Tasks 299

totheent ry preventstheent ry being processed until there is room in the buffer. If the buffer is full then the
reader task is suspended (blocked) until asuccessful getent ry is made. The guards for an ent r y statement are
re-evaluated after a successful call on the protected object. The full implementation of the protected type
PT_Buf f er isasfollows:

protected body PT Buffer is

The queue is implemented in sequential store with the two indices head and t ai | keeping track of the

current extraction and insertion points respectively. A count of the active cells used in the buffer is held in
no_i n_queue. Figure 20.5 illustrates the queue after adding the characters‘ t’ ,* e’ ,* x’ ,“ t’.

Head Tail

.

T Je | x |t

Figure 20.5 Queue holding the characters’ t ext ’ .

The procedure Put in the body of the protected object adds new data to the queue. Data can only be added to
the queue when there isroom. The index Tai | marks the position of the next data item to be added. When no
more datais available to add to the queue the variable Fi n is set to true.

entry Put(Ch:in Character; No_More:in Bool ean)
when No I n_Queue < Queue _Size is
begi n
i f No_Mre then --Last
Fin := True; --Set flag
el se
El enents(Tail) := Ch; --Add to queue
Tail := Tail +1; --Next position
No In_Queue := No_In_ Queue + 1; --
end if;
end;

The procedure Get extracts data from the queue. The head indexes the data item at the front of the queue.
The parameter eof is set to true when no more data is available. Thisis different from atemporary unavailability
of datadueto the reader task blocking.

entry Get(Ch:in out Character; No_Mre:out Bool ean)
when No_In_Queue > 0 or else Finis

begin
i f No_In_Queue > 0 then --ltem avail abl e
Ch := Elements(Head); --Cet item
Head : = Head+1; --Next position
No_ I n_Queue := No_In_Queue - 1; --
No_More : = Fal se; --Not end
el se
No_More : = True; --End of itens
end if;
end;

end PT_Buffer

end Pack_Thr eads;

Note: When all the data has been exhausted from the buffer, the procedure get will return falseinits second
parameter.

O M A Smith - May not be reproduced without permission

300 Tasks
20.5.2 Putting it all together

When the above program is compiled and run it will perform a copy operation using the internal buffer to even
out differences between the speed of the input and output streams. For example, to copy the contents of f r omto
thefilet o auser can type:

copy fromto

20.6 Delay

Execution of a program can be delayed for a specific number of seconds or until a specific time is reached. For
example, to implement a delay of 2.5 secondsin a program the followingdel ay statement is used.

del ay 2.5;

Note: The delay time is of type Dur at i on, which has a range of 0.0 .. 86_400.0 and is defined in the
package Ada. Cal endar . The specification of the package Ada. Cal endar is contained in Section
C.15, Appendix C.

To delay until aspecific timethe until form of thedel ay statement is used. To delay part of a program until
the 1st January 2000 the following statement is used:

delay until Tine_O(2010,1,1,0.0); -- Until 1 Jan 2010
Note: The package Ada. Cal endar contains the definition for Ti me_Of which returns the date as an
instance of Ti e.
20.7 Choice of accepts

The select construct is used to select between several different possible rendezvous. The form of the select
construct isasfollows:

sel ect -- Choice of accepts
accept optionl do

end;

or
accept option2 do
end;

end sel ect;

This can be used when atask can have more than one rendezvous made with it from several different sources.
For example, a task controlling output to a terminal may be accessed by either a text interface for information
messages, or a block image interface for pictorial data. The sel ect construct causes a wait until one of the
specified rendezvous is made.

O M A Smith - May not be reproduced without permission

Tasks 301

Note: A protected type may be simulated by using a task which consists of a loop in which a select statement
is embedded. Each rendezvous within the sel ect statement will then have its execution serialized.

For example:

| oop
sel ect -- Serialization of code
accept optionl do end;
or
accept optionl do end;
end sel ect ;
end | oop;

20.7.1 Accept alternative

An el se part may be added to a sel ect statement. The statements after the el se will be obeyed if a
rendezvous cannot be immediately made with any of theaccept statementsinthesel ect construct.

sel ect -- Choice of accepts
accept optionl do

end;
el se
St at enent s; -- Only executed if no call on an
-- accept imediately satisfied
end sel ect

20.7.2 Accept time-out

The select construct may also include a time-out delay after which, if there is no accept called following the
statements, the delay will be executed. The format of this variation of the select construct is:

sel ect -- Choice of accepts
accept optionl do
end,
or
del ay TI ME; -- Tine out delay in seconds
St at enent s; -- Only executed if no call on an
-- accept within TIME seconds
end sel ect;
Note: There may be only one delay alternative and no el se part.

This construct can be used to i mplement a watchdog task that will report an error if it has not been polled for a
certain time. This watchdog task can act as a safety measure to report that the software is not performing as
expected. An implementation of a simple watchdog timer is as follows:

package Pack_Wat chdog is

task type Task_Watchdog is - -Specification
entry Poll; - -Rendezvous
entry Finish; --Rendezvous

end Task_Wat chdog;
end Pack_Wat chdog;

O M A Smith - May not be reproduced without permission

302 Tasks

The entry Pol | iscalled at regular intervals to prevent the watchdog task from reporting an error. Thetask is
terminated by acall toFi ni sh. Theimplementation of the task is as follows:

wi th Ada. Text | o;
use Ada. Text _lo;
package body Pack_Wat chdog is
task body Task_Watchdog is
begi n
| oop
sel ect
accept Pol I ;
or
accept Fini sh;
exit;
or
del ay 0. 2;

New_Li ne;
exit;
end sel ect;
del ay 0.0001;
end | oop;
end Task_Wat chdog;
end Pack_Wat chdog;

Put (" WARNI NG Wat chdog failure");

- -1 npl emrent ati on

--Successful poll

--Term nat e

--Time out

--Cause task switch

If apoll isnot received every 0.1 seconds then the task will report awarning to the user.

20.8 Alternativesto a task type

Tasks do not have to be defined as a task type. They can be defined as a package or even as part of a program

unit.

20.8.1 Aspart of a package

A task can be specified as a package. In this format, there is less flexibility as now there can only be one instance
of the task. For example, the task to calculate afactorial could have been specified asfollows:

package Pack_Factorial is
task Task_Factorial is
entry Start(F.in Positive);
entry Finish(Result:out Positive);
end Task_Factori al ;
end Pack_Factorial ;

- -Specification
--Rendezvous
- -Rendezvous

O M A Smith - May not be reproduced without permission

Tasks 303

the implementation of which is:

package body Pack_Factorial is
task body Task_Factorial is - -l npl ement ati on
Factorial : Positive;
Answer : Positive := 1;
begi n
Put ("Pack_factorial"); New_Line;
accept Start(F:in Positive) do --Factorial
Factorial := F;
end Start;
for 1 in 2 .. Factorial |oop --Calcul ate
Answer : = Answer * |;
end | oop;
accept Finish(Result:out Positive) do --Return answer
Result := Answer;
end Finish;
end Task_Factori al ;
end Pack Factori al ;

The code to interact with thistask in a package would be as follows:

with Ada. Text _l o, Ada.lnteger_Text_lo, Pack_Factorial;
use Ada. Text_lo, Ada.lnteger_Text_lo, Pack_Factorial;
procedure Main is
Factorial: Positive;
begi n
Task_Factorial.Start(5); --Start factorial calculation
--Task runni ng

Put ("Factorial 5 is ");

Task_Factorial.Finish(Factorial); --Cbtain result
Put (Factorial); New_Line;
end Mai n;
Note: If this form is used, then the task will come into immediate existence as soon as the program is
executed.

Only oneinstance of the factorial task can be created.

O M A Smith - May not be reproduced without permission

304 Tasks

20.8.2 As part of a program unit

package Pack_Factorial is
task type Task_Factorial (F:Positive) is -- Specification
entry Finish(Result:out Positive); - - Rendezvous
end Task_Factori al ;
end Pack Factori al ;

--[pack_factorial.adb] Inplenmentation
package body Pack_Factorial is

task body Task_Factorial is -- | npl ement ati on
Answer . Positive := 1;
begi n
for I in 2 .. Floop --Cal cul ate
Answer = Answer * |;
end | oop;
accept Finish(Result:out Positive) do --Return answer
Result := Answer;
end Fini sh;

end Task Factorial;
end Pack_Factorial;

with Ada. Text _l o, Ada.lnteger_Text_lo, Pack_Factorial;
use Ada.Text _lo, Ada.lnteger_Text_lo, Pack _Factorial;
procedure Main is

Num : Positive;
begi n

Num : = 7;

decl are
Factorial : Positive; - - Answer
Thread_1 : Task_Factorial (Num; --Task is
begi n
--Do sonme other work as well
Put ("Factorial "); Put(Num); Put(" is ");

Thread_1. Fini sh(Factorial); --CObtain result
Put (Factorial); New_Line;
end,
end Mai n;
Note: The task will come into existence as soon as the programunit is executed.

20.9 Self-assessment

° What is athread or task in a programming language?

° What Ada construct can be used to implement athread or task?

[How isinformation passed between two threads? Explain why a special construct isrequired for this
activity.

° What is the difference between atask type and anormal type?

[What is the difference between execution of a procedure and execution of afunction in a protected
type?

° What happens when atask typeis elaborated?

O M A Smith - May not be reproduced without permission

Tasks 305

How can atask select the current rendezvous that is made with it, from a number of possible
rendezvous?

Why might a program need to employ awatchdog timer?

How might a constantly running Ada program execute some code at a particular time of the day?

20.10 Exercises

Construct the following:

Fibonacci task
A thread or task which will calculate the n'th term of the Fibonacci series. The rendezvous with this task
are:

) Calculate(n); -- What termto find,
) Deliver(res); -- The result.
Factorial

A thread or task which will calculate the factorial of a supplied value. The task should allow multiple
serial calculations to be requested. The rendezvous with thistask are:

) Calculate(n); -- What termto find,

) Deliver(res); -- The result;

° Fi ni sh; -- Term nate the task.
Fast copy

A program to perform an optimal block copy using an intermediate buffer of disk blocks to even out any
differencesin speed between the input and output streams.

Communication link
A program to allow the sending of data between two computer systems using a serial port. The program
should be able to inform the user if the other machine has not responded within the last two minutes.

O M A Smith - May not be reproduced without permission

21 System programming

This chapter shows how access can be made to the low-level facilities of the Ada language. This
facilitates the construction of programs which interact with the system host system directly.

21.1 Representation clause

An enumeration may be given a specific value by a representation clause. For example, the following
enumerations, defined for the type Count ry:

type Country is (USA, France, UK, Australia);

may each be given their international telephone dialling code with the following representation clause:

type Country is (USA, France, UK, Australia);
for Country use (USA=> 1, France=> 33, UK=> 44, Australia=> 61);

Thus, internally the enumeration Fr ance would be represented by the number 33.

Note: The values given to each enumeration must be in ascending order and unique.

However, even though the enumerations may have non-consecutive representations, attributes of the
enumeration will be asif there had been no representation clause. For example:

Expression Delivers
Country’ Succ(USA) France
Country’ Pred(Australia) UK
Country’ Pos(France) 1
Country’ Val (2) UK

To access the value of the enumeration requires the use of the generic package Unchecked_Conver si on
that will deliver an object as a different type without any intermediate conversions. The only restriction with the
use of the generic functionUnchecked _Conver si on isthat the source and destination objects must be of the
samesize.

In this case this can be ensured by informing the compiler of the size in bits required to use for the
representation of an object of type Count r y. For example, to set the size for the enumeration Count r y to bethe
same size asthetypel nt eger thefollowing representation clause would be used:

type Country is (USA, France, UK, Australia);
for Colour'Size use Integer'Size;
for Country use (USA=> 1, France=> 33, UK=> 44, Australia=> 61);

Note: Theattribute' Si ze deliversthe sizein bits of an instance of the type.

O M A Smith - May not be reproduced without permission

System programming 307

21.1.1 Putting it all together

To print the international telephone code for France the following code can be used:

with System System Storage_ El ements;
use System System Storage_El enents;
procedure Main is
type Country is (USA, France, UK, Australia);
for Colour'Size use Integer'sSize;
for Country use (USA=>1, France=>33, UK=>44, Australia=>61);

function Idc is new Unchecked_Conversion(Country, Integer);
begi n

Put ("International dialling code for France is ");

Put (I dc(France));

New_Li ne;
end Mai n;

which when run, would produce the following results:

International dialling code for France is 33

It would also be convenient to also include Canada in the Country enumeration for telephone codes.
However, as Canada has the same country code as the USA, this cannot be done directly. The reason for thisis
that two enumerations may not have the same physical representation. The way round thisisto define arenaming
for Canada as follows:

function Canada return Country renanmes USA;

which defines Canada as a function that returns the enumeration USA asits result.

21.2 Binding an object to a specific address

In some limited situations it is necessary to read or write from absolute locations in memory. In the historic
operating system MS DOS the time of day is stored in locations (in hexadecimal) 46E and 46C. The exact
specification of what is stored is as follows:

L ocation (hexadecimal) | Contents

046E - 046F Thetime of day in hours.
046C - 046D Theticks past the current hour.
Each tick is 5/91 seconds.

An object may be bound to an absolute location with the f or use clause. For example, to bind the integer
variable Ti me_Hi gh to the absolute location 16#4 6 E# the following declaration can be used:

Ti me_H gh_Address : constant Address := To_Address(16#046C#);

type Tine is range 0 .. 65365; --Unsi gned
for Tinme'Size use 16; -- in 2 bytes

Ti me_Hi gh: Ti ne;
for Time_Hi gh' Address use Ti me_Low_Address;

Note: Timeisatypedescribing a 16 bit unsigned integer.
The address 16#046 E# must be of type Addr ess that is defined in the package Syst em The child
package Syst em St or age_el enent s contains the function t o_addr ess which converts an

integer into an address.

O M A Smith - May not be reproduced without permission

308 System programming

A program to print the current time of day in hours, minutes and seconds in a programming running under the
DOS operating system is as follows:

with System System Storage_El enents,

Ada. Text _| o, Ada. | nteger_Text_Io;

use System System Storage_El enents,

Ada. Text _| o, Ada. | nteger_Text _|o;

procedure Main is

Ti me_Hi gh_Address : constant Address := To_Address(16#046C#);
Ti me_Low_Address : constant Address := To_Address(16#046E#);

type Seconds_T is range 0 .. 1 _000_000_000; --up to 65k * 5
type Tine is range 0 .. 65365; --Unsi gned
for Tinme'Size use 16; -- in 2 bytes

Time_Low : Tine;

for Time_Low Address wuse Ti me_Hi gh_Address;
Ti me_Hi gh: Ti ne;

for Time_Hi gh' Address use Ti me_Low_Address;

Seconds : Seconds_T;
begi n
Put("Tine is ");
Put(Tine'lmage(Time_H gh)); Put(" :"); - - Hour

Seconds : = (Seconds_T(Tine_Low) * 5) / 91;
Put (Seconds_T' | mage(Seconds/ 60)); Put(" :"); --Mns
Put (Seconds_T' | nage(Seconds rem 60)); - - Seconds
New_Li ne;

end Main;

which when run on a DOS system would produce output of the form:

Time is 17 : 54 : 57

Note: For this to work, the generated code must be able to access these low locations in DOS.

21.2.1 Accessto individual bits

On an MS DOS system memory address 16#0417# contains the status of various keyboard settings. Individual
bits in this byte indicate the settings (set or not set) for the scroll lock, number lock, caps and insert keys. The

layout of thisbyteisillustrated in Figure 21.1.

Most significant Bit position Least significant
! 6 5 4 3 2 1 0
Insert | €aps |Number|Scroll

lock lock lock

Figure 21.1 Keyboard status on an M SDOS system.

O M A Smith - May not be reproduced without permission

System programming 309

The following demonstration program prints out the status of the insert, caps lock, and number lock keys:

with System System Storage_ El enents,
Ada. Text _l o, Ada.|nteger_Text_Io;
use System System Storage_El enents,
Ada. Text | o, Ada.lnteger_Text _Io;
procedure Main is
Keyboard_Address : constant Address := To_Address(16#417#);
type Status is (Not_Active, Active);
for Status use (Not _Active => 0, Active => 1);
for Status'Size use 1;

The above declarations define the enumeration St at us to occupy a single bit. The next set of declarations
defineKeyboar d_St at us and access to the individual bits that make up the status byte. Thisis defined using a
record structure with arepresentation clause for the specific layout of the bits.

type Keyboard_Status is

record
Scroll _Lock : Status; --Scroll |ock status
Num_Lock . Status; --Num | ock status
Caps_Lock . Status; --Caps | ock status
I nsert . Status; --lnsert status

end record;

for Keyboard_Status use

record

Scrol | _Lock at O range 4..4; --Storage unit O Bit 4
Num Lock at 0 range 5..5; --Storage unit 0 Bit 5
Caps_Lock at 0 range 6..6; --Storage unit 0 Bit 6
I nsert at 0 range 7..7; --Storage unit 0 Bit 7

end record;

Keyboar dst at us_Byte : Keyboard_St at us;
for Keyboardstatus_Byte' Address use Keyboar d_Address;

The representation clause Scrol | _Lock at O range 4..4 reguests that the object Scrol | _Lock be
stored at an offset of 0 storage |ocations from the start of the record at bit position 4.

Note: On a PC the storage unit size is one byte.
The bits selected may be outside the storage unit.
The body of the program which interrogates these individual bits using the individual record components of
Keyboard_St atus_Byteis:

begi n
i f Keyboardstatus_Byte.lnsert = Active then
Put ("I nsert mode set"); New_Li ne;
el se
Put ("I nsert node not set"); New_Line;
end i f;
i f Keyboardstatus_Byte. Caps_Lock = Active then
Put (" Caps l ock set"); New_Line;
el se
Put (" Caps | ock not set"); New_Line;
end if;
i f Keyboardstatus_Byte. Num Lock = Active then
Put (" Nunber | ock set"); New_Li ne;
el se
Put ("Nunber | ock not set"); New_Line;
end i f;
end Mai n;

O M A Smith - May not be reproduced without permission

310 System programming

which when run on an M SDOS system with none of these keys set would print:

I nsert node not set
Caps | ock not set
Nunmber | ock not set

Note: For thisto work, the generated code must be able to access these low locationsin DOS.

21.3 Salf-assessment

) Using arepresentation clause, the following enumeration for Count r y defines the IDC(International
Dialing Code) for asmall selection of countries.

type Country is (USA, France, UK, Australia);
for Country'Size use |nteger'Size;
for Country use (USA=> 1, France=> 33,

UK=> 44, Australia=> 61);

What do the following deliver?
(@ Country' Pos(USA)
(b) Country'Val (2).
° How can the IDC of France be extracted from the enumeration for Fr ance?

° As Canada has the same IDC as the USA, how can an enumeration for Canada beincluded in the list
of countries above?

) How can the variable Cost be declared so that its address maps on to the byte at absolute |ocation
040 in programs address space?

21.4 Exercises

Construct the following:

° Memory dump
A program which printsin hexadecimal the contents of the bottom 100 locations of the current program.

O M A Smith - May not be reproduced without permission

22 A text user interface

This chapter defines an API (Application Program Interface) for use by an application program that reads
and writes textual information to and from windows on a VDU screen. The TUI (Text User interface) uses
the metaphor of non-overlapping windows. The application program is written using an event-driven
regime. In this way, call-back functions are written to implement services requested by a user of the
application.

The next chapter describes in detail the implementation of the TUI.

22.1 Specification

A TUI (Text User Interface) provides various types of non-overlapping windows on a VDU screen. The windows

provided are:
[A text window into which characters from the Adatype Char act er can bewritten.
) A dialog window that provides a mechanism for a user to enter character data. Associated with adialog
window isafunction that is called on completion of the user’ s entered data.
) A menu window from which a user can select a menu item from alist of available options.

For example, ademonstration application that converts milesinto kilometres usesthe TUI to input and display
dataasfollows:

focoococooocooocoooccooccooscoosoooa +
- + T T +
| Dial og] Mles [| Distance in mles = 50. 00 [
[-----mmmm i - | | Distance in Kms = 80. 47 |
[50. 0* |
frooooccoocoooooooooooc + I 0000000000000 E000000000000000000 +
Note: A#inthetop left-hand corner of a window signifies which window has the focus for input.
The interface for this program consists of three distinct windows:
) A text window which displays the title of the program
“Mles to kil onetres”
) A dialog window that solicitsinput from the user. In this distance in miles to be converted into
kilometres.
) A text window to display of the results of the conversion.

The TUI interface for writing to windows is modelled on the procedure Put in the package Ada. Text _| o.
Associated with an instance of a Dialog window is a call-back function that implements the functionality of the
user interaction. Thisis often referred to as an event-driven metaphor.

The dialog window's call-back function is executed when a user has finished inputting data into the program.
For example, in the miles to kilometres program the dialog window's call-back function is executed when a user
presses return compl eting the entry of the milesto be converted into kilometres. The call-back function calculates
the conversion to kilometres and displays the answer in the result’ s window.

O M A Smith - May not be reproduced without permission

312 A Text user interface
22.2 API for TUI

The API (Application Program Interface) for the TUI consists of a set of function and procedure calls. These are
implemented as methods in the classes used to form the complete TUI interface. These window classes form an
inheritance hierarchy illustrated in Figure 22.1.

Dialog

Menu

Title Menu

Figure 22.1 Window hierarchy.

The API callsfor aW ndow are inherited to form the base API callsfor a Menu and Di al og. Likewise, the
base API calsforaTi t | e_Menu areinherited from aMenu.

22.2.1 To set up and close down the TUI

The following procedures are responsible for setting up and closing down the TUI system. These API calls are
independent of any window and thus do not require as a parameter an actual instance of awindow. These methods
are class methods of the class| nput _nmanager .

function / procedure | Note

W ndow_Pr ol og; Set up the environment for the TUI. This must be called
outside the block in which windows are elaborated.

W ndow_Start; After initializing any program-generated windows, start the
application by allowing a user to interact with the program.

W ndow_Epi | og; Close down the window system. This must be called
outside the block in which the windows are elaborated.

For example, the structure of a program using the TUI is:

procedure Main is
begi n
W ndow_Pr ol ogue; -- Set-up wi ndow system
decl are
-- Declaration of wi ndows used in
-- the program
begi n
-- Initialization of w ndows
-- used in program
W ndow_St art ; -- Start the user interaction
end;
W ndow_Epi | og; -- Close w ndow system
end Main;

O M A Smith - May not be reproduced without permission

Note:

A Text user interface 313

Thereason for this structure isto allow initialization code for any declared windows to be run after the
window system has been initiated by the procedure W ndow_Pr ol og and to allow any finalization
code for the elaborated windows to be executed before the procedure W ndow_Epi | og iscalled.

To avoid simultaneous access to a window, program initialization of a window must occur before the
user isallowed to interact with the system.

22.2.2 Window API calls

A text window is created with a declaration of the form:

Wn : Wndow,

A text window can be created and written to using the following API calls:

Notes

Function / procedure

1

procedur e Framewor k(The:i n out Wndow
ABS X CRD, ABS Y -0 PO TIE
Max_X Ord, Max_Y Qrd: Positive;
G:in Pf :=null);

procedure Put(The:in out Wndow, Mes:in Sring);

procedure Put(The:in out Wndow Ch:in Character);

procedure Put(The:in out Wndow, Nin Integer);

Procedure Position(The:in out Wndow X Y:in Positive);

procedure dear(The:in out Wndow);

procedure New Line(The:in out Wndow);

OO [WININN

procedur e Make Wndow(The:in out Wndow Mb:in Mde);

Notes:

Sets the absol ute position and size of the window on the screen.
Thetop left hand corner positionisat: (abs_x_crd, abs_y crd)
The bottom right hand corner position is at:

(abs_x_crd+nmax_x_crd-1, abs_y crd+nax_y_crd-1)
Displaysinformation in awindow. These functions are modelled after the proceduresin
Ada. Text _| o.

Sets the current output position in the window.

Clears the window to all spaces.

Writes a newline to the window. Thiswill cause the information in the window to scroll up if the
current position is at the last line of the window.

Makes the displayed window visible or invisible.

22.2.3 Dialog API calls

A dialog window is created with a declaration of the form:

D ag :

Di al og;

O M A Smith - May not be reproduced without permission

314 A Text user interface

A dialog window isinherited from aW ndow and as well as all the API calls of a W ndow has the following
additional API call:

Note Function / procedure

1 procedure Framework (The:in out D al og;

Abs X Abs_Y:in Positive;
Max_X in Positive;

Nane:in Sring; o:in P _f);

Note:

1 Sets the absol ute position of the window on the screen. The size of the window is set withnax_x. The
call-back function cb will be called after the user has constructed a message in the dialog box . Thisis
initiated by the user entering the Enter character (return key). When the Enter character isreceived
the Dialog window calls the call-back function with a string parameter containing the user’s entered
text. The signature of the call-back function is:

function Cb(Mes:in String) return String

where nes isthe message typed by the user.
22.2.4 User interaction with the TUI

A user of an application program that is built using the TUI API has the following switch characters defined:

Switch character Description

TAB Swaps the focus for user input to another window on
the VDU screen. The active window isindicated by a#
in the top left hand corner.

ESC Activates the menu system.
The menu system is described in detail in Section 22.4.
"E Terminates the TUI session. All windows will be closed
and the user returned to the environment which initiated
the program.

A switch character is used to activate a specific window on the system or cause aglobal effect.

22.2.5 Classes used

The TUI API is contained in the following classes:

API for Contained in the package Notes

A window Class Window -

A dialog box Class _Dialog Plusthe API inherited from a
W ndow.

A Menu bar Class Menu Plusthe API inherited from a
W ndow.

A Menu Title Class Menu_Title Plusthe API inherited from a
Menu

The TUIl setup | Class_Input_Manager Controlsthe input sent to the
TUI.

22.3 An example program using the TUI

A short program to illustrate the use of many of the API calls is shown below. This example program converts a
distance in miles entered by the user into kilometres. The package Pack _Pr ogr amcontains the procedure Mai n

that implements this program.

O M A Smith - May not be reproduced without permission

A Text user interface 315

with C ass_W ndow,
use C ass_W ndow,
package Pack_Programis
procedure Mai n;
private
P_Result : P_W ndow,
end Pack_Program

The call-back function User _I nput is executed when a user has entering the distance in miles and then
pressed Enter. This entered distance is converted to a floating point number using the procedure get in
Ada. Fl oat _Text _lo toconvert astring into an instance of aFl oat . If the number is not valid or an error in
the calculation occurs, then an appropriate message is displayed to the user.

with Ada. Text lo, Ada.Fl oat Text 1o0;
use Ada. Text_lo, Ada.Float_Text _|o;
with C ass_| nput _Manager, O ass_W ndow, C ass_Di al og;
use Cass_Input_Mnager, C ass_Wndow, C ass_Di al og;
package body Pack_Programis
function User_Input(Cb_Mes:in String) return String is
Mles : Float; --Mles input by user
Last . Positive; - -
Str_Kms: String(1 .. 10); --As a string in Kms
Str_Ms: String(1 .. 10); --As a string in Mles
Begi n

begin
Get(Cb_Mes & ".", Mles, Last);
Put(Str_Kms, Mles * 1.609_344, Aft=>2, Exp=>0);
Put(Str_Ms, Mles, Aft=>2, Exp=>0);

Put(P_Result.all, "Distance in Mles =");
Put(P_Result.all, Str_Ms); New Line(P_Result.all);
Put(P_Result.all, "Distance in Kme =");
Put(P_Result.all, Str_Knms); New Line(P_Result.all);
exception
when Data_FError =>
Put(P_Result.all, " Not a valid nunber”);

New_Line(P_Result.all);
when ot hers =>

Put(P_Result.all, " [Calculation error]");
New_Line(P_Result.all);

end;

return ""

end User | nbut ;

Note: The call-back function returns a string as its result. This provides a mechanism for returning
information to the environment which called it. In this particular case, no information isreturned.
A decimal point (. 0) is appended to the user'sinput to allow a user to enter an integer value and still
have the number processed correctly.
The package Ada. Text _loisrequired for the exceptionDat a_Er r or .

In the procedure Mai n the three windows that will be displayed are declared. Then the call-back function
User _| nput isassociated with dialog window and the program executes and waits for a user interaction.

O M A Smith - May not be reproduced without permission

316 A Text user interface

procedure Main is

begi n
W ndow_Pr ol ogue; --Setup wi ndow system
decl are
Result : aliased W ndow, --Result wi ndow
Input : Dialog; --1nput W ndow
Title : Wndow, --title Wndow
begi n
Framework(Title, 20, 1, 36, 5); --Titl e Wndow
Framewor k(Result, 30, 10, 36, 5); --Result W ndow

Position(Title, 8, 2);
Put(Title, "Mles to kilonetres");

Framewor k(| nput, 5, 10, 22, -- 1 nput W ndow
"Ml es", User_Input'access);
P_Result := Result'Unchecked_Access;
W ndow_Start; --Start the user interaction
end;
W ndow_Epi | ogue; --Cl ose w ndow system
end Main;

end Pack_Program

Note: The call tow ndow_pr ol og initializesthe TUI system.

22.3.1 How it all fitstogether

In the procedure Mai n the API framework is called to set the size and position of the various windows on the
screen. Thisinitialization is done before a user of the application is allowed to interact with the system.

begi n
Framework(Title, 20, 1, 36, 5); --Title Wndow
Franmewor k(Result, 30, 10, 36, 5); --Result W ndow

Position(Title, 8, 2);

Put(Title, "Mles to kilonetres");

Framewor k(I nput, 5, 10, 22, -- I nput W ndow
"M | es", User_|nput'access);

Note: The access value of the functionUser _| nput is passed to the function Fr amewor k that sets up the

call-back function.
Thetitl e window top left hand corner is at position (20,1) and the bottom right-hand corner at

(20+36-1,1+5-1).

The access value of the Resul t swindow is assigned to P_Resul t so that it can be accessed by the call-
back functionUser _| nput . Remember, the call-back function must be at the library level.

P_Result := Result'Unchecked_Access;

Note: As the type used to declare the access value for a window is at the library level,
'Unchecked_Access is required to be used. This is used to override the error that there is a
potential inconsistency in using a library level variable (P_Resul t) to hold the access value of a
local variable (Resul t).

The event-driven component part of the program is activated by a call to the procedure W ndow_St art.
From this point onwards the program flow is driven by the user interacting with windows displayed on the
terminal screen. Eventually the user will terminate the program, at which point the procedure W ndow_St ar t

will return.

O M A Smith - May not be reproduced without permission

A Text user interface 317

W ndow _Start; --Start the user interaction

The procedure W ndow_Epi | og closes down the system. This must be called outside the block in which the

instances of the windows were elaborated. This is to allow the finalization code to be called on the elaborated
windows before W ndow_Epi | og iscalled.

end;

W ndow_Epi | ogue; --Cl ose wi ndow system
end Main;

22.3.2 Putting it all together

When compiled with the TUI API library code, the screen display with added annotations to show which call of
f ramewor k was used, together with position information is shown below:

framework(title, 20, 1, 36, 5);

(20,2)

o +

I I

| Mles to kil onetres [

. I

e mmmmeeeae- +
(5,10) (30,10
e N SO +
|Dalogl Mles | | |
|- |
| * | (30+36-1,10+5-1) |
T pupupe SR - +

framework(result, 30, 10, 36, 5);

framewor k(i nput, 5, 10, 22, "Ml es", user_input' Access);

After auser hastyped in adistance of 50 milesto be converted to kilometres the screen will display:

ococococcoooocococoococooooooocooano o0 +

I I

| Mles to kilonetres |

I I

focococoococcocccocooococococococooocococooo +
nocccocccocoocoocococococ + fhooccccoooocococococoooccoccoocooocooocs +
| Dial og] M les | | Distance in mles = 50. 00 [
R | | Distance in Kms = 80. 47 [
| 50. 0* | [|
o emeeeea e + e +

22.4Themenu system

The menu system is based on the metaphor of a menu title bar at the top of the screen which changes as new menu
options are selected. When a user selects away from the menu bar, the menu bar is returned to the top level of the
menu hierarchy. The menu system is activated by typing the switch character ESC.

O M A Smith - May not be reproduced without permission

318 A Text user interface

For example, a menu title bar of two items:

Menu Component Effect
About Prints information about the program
Reset Resets the program to an initial state

would be displayed as:

The character * indicates the current menu item. To select this menu item the user presses the selection key
Enter. To change the current menu item the Arrow keys are used to move between the various options. Left arrow
moves left and right arrow moves right the selected component. The effect of going right at the right-most menu
item or left at the left-most menu item is to wrap around to the next item.

In addition to the API of aW ndow, the Menu and Menu_Ti t | e API have the additional method of:

Note | Function / procedure

1 procedure Framework(The:in out Menu' d ass;
M:in Sring:="; WLin P Menu:=null; l:in P_f:=null;
M:in Sring:=""; V2in P Menu:=null; 2:in P_f:=null;
MB:in Sring:=""; V@ in P Menu:=null; 3:in P f:=null;
MEin Sring:=2""; Whin P Menu:=null; 4:in P_of:=null;
M:in Sring:=""; VB:in P_Menu:=null; 5:in P_(of:=null;
M:in Sring:=""; VB:in P Menu:=null; 6:in P.of:=null);

Note:
1. This sets up a menu title bar or a menu title. Thefirst parameter can be an instance of either a Menu

or aMenu_Ti t | e. Each menuitemin the menu bar hasthree parameters:

) The displayed name of the menu item.
) A possible pointer to another menu bar.
) A possible pointer to a call-back function which isto be called when the menu is sel ected.

The second and third parameter are mutually exclusive. Thus, you can have either another menu bar
or a call-back function.
Asthe menu bar isalways at the top of the screen its position is not selected. It would of course be an
error to have a window overlapping the menu bar.
Thetype P_Cbf isdefined as:

function Cb(Mes:in String) return String
String;

O M A Smith - May not be reproduced without permission

A Text user interface 319

The following frameworks are used to set up a menu system with a main menu title bar and a sel ectabl e secondary
menu bar tied to the main menuitem Pri nt .

with d ass_| nput_Manager, C ass_Menu, dass_Menu Title,
Laser, Ink_Jet, About;
use C ass_|nput_Mnager, Cass_Menu, Cass_Mnu Title;
procedure Main is
begi n
W ndow_Pr ol ogue;
decl are
Menu_Bar : Menu_Title;
Printer_Type : aliased Menu;
begi n
Framewor k(Printer_Type,
"Laser", nul |, Laser'access,
"Ink jet", null, Ink Jet'access);
Fr anmewor k(Menu_Bar,
" About ", nul |, About'access,
"Print", Printer_Type' Unchecked_Access, null);
W ndow_Start;
end;
W ndow_Epi | ogue;
end Mai n;
Note: The call-back functionsLaser ,1 nk_Jet , and About process a user reguest when the appropriate

menu option is selected.
Theuseof 'Unchecked_Access to deliver theaccessvalueof pri nt er _t ype.

When the above code isincorporated into a program the menu system would display as follows:

Main menu bar Secondary menu bar
fococcccocooococcocooooo + fboocccoccooooocscoccoooos +
| About | *Print | | *Laser | Ink jet |
T + Fom e e e e e e eaaaa- +
Note: The secondary menu bar will overwrite the main menu bar regardless of the number of items in the
main menu.

O M A Smith - May not be reproduced without permission

320 A Text user interface
22.5Noughts and crosses program

Using the GUI system the following layout can be created to graphically represent the game of noughts and

Crosses.
o e e e e o +
| * About | Reset [Menu Bar
oo e e e ooa oo +
e m o o et o o o o o e o e e eme oo +
| Nought s and crosses
e +
Dialog B oo e mmmaoos +
Window | Dial og] Mwve (1-9) | | _
-------------------- | | 71 8] 9 |« Window
| * I |
R e T +| 4] 5] 6|
| e !
R e T +1 1] 2] 3]
| Player X || |
o S R SR +

The layout uses most of the componantsin the GUI system. These are:

° A menu bar.

Used to help control the game allows the user to select who starts and details about the game.
° A Dialog window.

Used by the player of the game to enter moves.
° Several Windows that display information about the current state of the game.

22.5.1 TheclassBoar d

A program to play the game of noughts and crosses using the TUI API interface is composed of a class Boar d
that has the following methods:

M ethod Responsibility

Add Add apieceto the board.

Reset Reset the board to empty.

State Return the state of the board.

Updat e Update onto awindow the state of the board.
Val i d Check if the moveisvalid.

The Ada specification for the classBoar d is:

O M A Smith - May not be reproduced without permission

A Text user interface 321
package Cl ass_Board i s
type Board is private;
type Gane_State is (Wn, Playable, Draw);
procedure Add(The:in out Board; Pos:in |nteger;
Pi ece:in Character);
function Valid(The:in Board; Pos:in Integer) return Bool ean;
function State(The:in Board) return Gane_State;
function Cell(The:in Board; Pos:in Integer) return Character;
procedure Reset(The:in out Board);
private
subtype Board_Index is Integer range 1 .. 9;
type Board_Array is array(Board_lndex) of Character;
type Board is record
Sqrs : Board _Array := (others =>"' "); --Initialize
Moves : Natural 1= 0;
end record;
end d ass_Board;
Note: It would have been elegant to re-use the previous noughts and crosses class for Boar d but the

functionality istoo dissimilar to make this a practical proposition. Code re-use is not always possible!

In the implementation of the class the function Val i d returns Tr ue if the suggested noughts and crosses

move isvalid.

package body Cl ass_Board i s

function Valid(The:in Board; Pos:in Integer) return Boolean is
begi n
return Pos in Board_Array' Range and then
The. Sqrs(Pos) ="' ';
end Valid;

The procedure Add is responsible for adding anew piece onto the board..

procedure Add(The:in out Board; Pos:in |nteger;
Pi ece:in Character) is
begi n
The. Sgrs(Pos) := Piece;
end Add;

The function St at e returns the enumeration W n, Dr awor Pl ayabl e depending on the current state of the
game. The constant array cel | s holds all possible win lines and the main body of the code uses the values held

in thisarray to determine the current state of the game.

O M A Smith - May not be reproduced without permission

322 A Text user interface

function State(The:in Board) return Game_State is
subt ype Position is Integer range 1 .. 9;
type Wn_Line is array(1 .. 3) of Position;
type All _Wn_Lines is range 1 .. 8§;
Cells: constant array (All _Wn_Lines) of Wn_Line :=
((1,2,3), (4,5,6), (7,8,9), (1,4,7),
(2,5,8), (3,6,9), (1,5,9), (3,5,7)); --All win lines
First : Character;

begi n
for PM in All_Wn_Lines |oop --All Pos Wn Lines
First := The.Sqrs(Cells(PwW)(1)); --First cell in line
if First /="' " then -- Looks prom sing
if First = The.Sgrs(Cells(PwW)(2)) and then
First = The. Sqrs(Cells(Pw)(3)) then return Wn;
end if;
end if;
end | oop;
if The. Moves >= 9 then --Check for draw
return Draw, -- Board full
el se
return Pl ayabl e; -- Still playable
end if;
end State;

The procedure Cel | returnsthe contents of acell on the playing board.

function Cell(The:in Board; Pos:in Integer) return Character is
begi n
return The. Sqrs(Pos);
end Cel | ;

The procedurer eset resetstheboard toitsinitial empty state.

procedure Reset(The:in out Board) is

begi n
The.sqrs := (others =>"' '); --All spaces
The. noves : = 0; --No of nobves
end reset;

end d ass_Board;

22.5.2 Package Pack_Pr ogr am

The package Pack_Pr ogr amcontains the publicly visible procedure Pl ay that will play the GUI based game
against two human opponents. In the private part of the package, the procedure Pl ay is broken down into further
procedures and functions. The variables in the private part of the specification will be visible to al these
procedure and functions.

These variables define windows that are used in the playing of the game of noughts and crosses.

O M A Smith - May not be reproduced without permission

A Text user interface 323

with Cl ass Board, C ass_W ndow,

use Cass_Board, C ass_W ndow,

package Pack_Programis
procedure Pl ay;

private
Ganme . Board; --The board
P_Wn_Brd : P_Wndow, --Wndow to display OXO board in
P Wn_Bnr : P_W ndow, --Wndow to display Banner in
PWnR : P_Wndow --Wndow to display commentary in
Pl ayer : Character; --Either "X or 'O

end Pack_Program

The private part of the package is asfollows:

with Ada. | nteger_Text _lo,

Cl ass_Di al og, O ass_Menu, Cass_Input_Mnager, C ass_Menu_Title;
use Ada.lnteger_Text _|o,

Cl ass_Di al og, C ass_Menu, Cass_Input_Mnager, C ass_Mnu Title;
package body Pack_Program is

The procedure Pl ay sets up the various windows used to display the game.

procedure Play is

begi n

W ndow_Pr ol ogue; --Setup w ndow system

decl are
Wn_Brd : aliased W ndow, --Board W ndow
Wn_R . aliased Wndow, --Result W ndow
Wn Bnr : aliased Wndow, --title W ndow
Wn_Usr : aliased Dialog; --Input Wndow
Ttt_Reset: aliased Menu; --Reset nenu
Ttt _Menu : Menu Title; --Title nmenu

The various windows on the screen are then initialized to their fixed co-ordinate positions.

begin
Framework(Wn_Bnr, 1, 4, 52, 3); - - Banner
Framework(Wn_Brd, 32, 8, 13, 9); --OXO board
Framewor k(Wn_R 9, 14, 22, 3); --Results

The menu bar sequence is then defined with the following frameworks:

Framewor k(Ttt_Reset,

"X start", null, Reset_X access,
"Ostart", null, Reset_O access);
Framewor k(Ttt_Menu,
" About ", nul |, About'access,
"Reset ", Ttt_Reset' Unchecked_Access, null);

Following the initialization of global variablesthe writing of various introductory messages is performed:

O M A Smith - May not be reproduced without permission

324 A Text user interface

Position(Wn_Bnr, 17,

1);

Put (Wn_Bnr, "Noughts and crosses");
Framewor k(Wn_Usr, 9, 8, 22,

"Move (1-9)", User_Ilnput'access);
Pl ayer :="'X; --Set player
P Wn_Brd : = Wn_Brd' Unchecked_Access; --OXO Board
P_Wn_Bnr := Wn_Bnr' Unchecked_Access; --Banner
PWn_R := Wn_R Unchecked_Access; - - Comment ary
Di spl ay_Board(P_Wn_Brd); --Empty board
New_Line(Wn_R); --d ear
Put (Wn_R Pl ayer " & Player); --Players turn is
Put(Wn_Usr, ""); --Cursor

The user is only then allowed to start playing the game.

W ndow_Start; --Start the user interaction
end;
W ndow_Epi | ogue;

end Pl ay;

--Cl ose wi ndow system

The procedure Di spl ay_Boar d writes the initial representation of the board into a GUI window on the

screem.

procedure Display_ Board(Wn:in P_Wndow) is

begi n
Position(Wn.all, 1, 2);
Put (Wn. al |, 71 8] 9"); New_ Line(Wn.all);
Put(Wn.all, " --------- "); New_Line(Wn.all);
Put (Wn. al |, 4| 5] 6"); New Line(Wn.all);
Put(Wn.all, " --------- "); New_Line(Wn.all);
Put (Wn. al |, 1] 2| 3"); New_ Line(Wn.all);

end Di spl ay_Boar d;

The procedure Updat e updates the representation of the board by adding the current move to it. Rather than
re-display the board in its entirety only the square that has changed is re-written.

procedure Update(Mve:in |nteger; S
type Co_ Ordinate is (X, Y);

type Cell _Pos is array (Co_Odinate) of Positive;

Wn:in P_Wndow) i

type Board is array (1 .. 9) of Cell_Pos;
Pos: constant Board : = ((2,6), (6,6), (10,6),
(2,4), (6,4), (10,4),
(2,2), (6,2), (10,2));
begi n

Position(Wn.all, Pos(Mve)(X), Pos(Mve)(Y));
Put(Wn.all, Cell(Gane, Mve)); --Di splay counter;
end Updat e;

ThefunctionUser _I nput isacall-back function that is called when a player has entered their move into the
Di al og window

O M A Smith - May not be reproduced without permission

A Text user interface 325

function User_Input(Cb_Mes:in String) return String is
Move: Integer; Last: Positive;
begi n
Clear(PWn_Rall); --Cl ear
CGet (Cb_Mes, Move, Last); --to int
if Valid(Gane, Move) then --Valid
Add(Game, Move, Pl ayer); --to board
Update(Move, P_Wn_Brd);
case State(Gane) is --Gne is
when Wn =
Put(P_Wn_Rall, " " & Player &" wins");
when Pl ayable =>
case Pl ayer is - -Next player
when ' X' => Player :='0; -- ' X ="'0
when ' O => Player :="'X; --'g ='X
when others => null; - -
end case;
Put(PWn_Rall, " Player " & Player);
when Draw ==
Put(PWn_ Rall, " It's a draw ");
end case;
el se
Put (P Wn_Rall, " " & Player & " Square invalid");
end if;
return "";
exception
when ot hers =>
Put (P Wn_Rall, " " & Player & " re-enter nove");
return "";
end User _| nput;

Note: The exception is used to handle invalid input from a user.
The menu system has three call-back functions, the first and second (Reset _X and Reset _O) reset the board

to empty and start the game for either X or O.

procedure Re_Start(First_Player:in Character) is

begi n
Pl ayer := First_Pl ayer; --Start with
Reset (Gane); --Reset Board
Di spl ay_Board(P_Wn_Brd); --Di spl ay
Cear(PWn_Rall); --Status info
Put(PWn_R all, " Player " & Player); --Player nane

end Re_Start;

function Reset_X(Cb_Mes:in String) return String is
begi n

Re_Start('X); return "";
end Reset _X;

function Reset_O(Cb_Mes:in String) return String is

begi n
Re_Start('O0); return "";
end Reset_G
Note: The common code is factored out in the procedurer e_st art .

The third call-back function displays information about the program in the window represented by the handle
P Wn_Bnr.

O M A Smith - May not be reproduced without permission

326 A Text user interface

function About(Cb_Mes:in String) return String is

begi n
Clear(PWn_Bnr.all); Position(PWn_Bnr.all, 17, 1);
Put(PWn_Bnr.all, "Witten in Ada 95");

return ;
end About ;

22.5.3 Putting it all together

When compiled and linked with the TUI API code the opening screen layout is as follows:

om e e e eeaaaa +
| * About | Reset |
oo e momoamao oo oo +
fooccccoooocococoocooococcoooooSococcoooooScoccoooooo +
| Noughts and crosses
oococooocooooncooooooOCO0O0oO0000o0Co000000000a0O0a 0 +
fhocoooocoocoooocoooocoooo §b dfocooocoooooo +
| Di al og| Move (1-9) | |
Joeseoszacaccocaneaes | 17181 9]
][] eeoemsces
R + |1 4] 5] 6]
--------- !
e PR EEE +] 1] 2] 3|
| Player X |
ocoocooccoocococcoacoo b dmccccococoo +
After the following moves have been made:
X’'s move Commentary O’smove Commentary
5 Claim the centre square 2 Not the correct move
9 Setting up awin 3 Block the X’s
1 Two win lines 9 Block one of them
4 Winwiththree X’'s
the screen layout will be:
fococcccocooococcocooooo +
| * About | Reset |
fooococccooccooocoocoo +
fhooccccoooococococoooococcoooooSococooooooScoccoooooo +
| Noughts and crosses
feooccocooccocooococoocooocoocoooocoocoScooocooocooooooo +
< + e-memmmeaan +
| Di al og| Move (1-9) | |
[oeseosoneaccocaneces | I x| 8] O]
=]| =eeeseees
R L +] X| X| 6]
--------- |
e T +| X| O] O]
| X Wns
dococcooccoocoococoooooo b ddmcoccooocoo +
22.6 Self-assessment

O M A Smith - May not be reproduced without permission

A Text user interface 327
° What is a call-back function and how is it used?

) How might the reversi program shown in Chapter 8 be modified so that it can be used with the TUI
interface? To what extent is code re-use possible from the original version?

22.7 Exercises

Construct the following programs:

° Currency converter

A program to allow a user to convert between two currencies. The program should allow the input of the
current currency rate.

° Reversi program
Re-implement the reversi program to use the TUI interface or any graphical interface that is available.

° Draughts program
Implement the game of draughts to use the TUI interface or any graphical interface that is available.

O M A Smith - May not be reproduced without permission

23 TUI: the implementation

This chapter looks at the implementation of the TUI (Text User Interface) described in Chapter 21. An
ANSI terminal or environment that supports ANSI terminal emulation is used as the output screen on
which the TUI is implemented.

23.1 Overview of the TUI

The TUI is composed of the following window types: W ndow, Di al og, Menu and Ti t| e_menu. These
windows have the following properties:

Type of window Explanation

W ndow A plain scrolling window into which text can be
written.

Di al og A dialog window into which the user can enter text. The
text is passed to a call-back function.

Menu A menu pane, from which a user can select a menu

option. The menu option selected either calls a call-back
function or selects a new menu pane.

Title_nmenu The root of a series of menu panes which overlay each
other.
Note: A call-back function is an Ada function called in response to user input.

The relationship between the different types of windows is shown in the inheritance hierarchy illustrated in
Figure 23.1.

Root_Window

1

Window

/\

Menu

/

Title_menu

Dialog

Figure 23.1 Inheritance diagram of the types of window inthe TUI.

O M A Smith - May not be reproduced without permission

TUI theimplementation 329

23.1.1 Structureof the TUI

In essence the TUI is composed of the following components:

Component Description

Windows A collection of heterogeneous windows created in the application
program.

Event loop The main processing loop for the program. The event |oop obtains the
next character from the user and determines which window this should
be passed on to.

Display The displayable representation of the windows in the system. Thisisan
ANSI terminal compatible display area.

The relationship between these componentsisillustrated in Figure 23.2.

Application
TUI Program Display
Internal structure of the TUI Set-up
User input Window Fm—--
> .]
- r-——--
_w] Window ' 1
_> - > L e — - - =
Call back
Event loop _ functions Seen by the user of
Array of activef the program
windows ‘\
TUI API

Figure 23.2 Structure of aprogram using the TUI.

A user of a program which employs the TUI classes interacts with a program by looking at the display,
selecting a window capable of receiving input and then sending one or more character(s) to this window. The
window selected by the user processes each character independently. For example, a dialog window will
accumul ate the characters sent to it, displaying the characters as they are received. Then, when the end of message
character is received, the whole text string is passed to the call-back function associated with the dialog window.
The call-back function implements a service requested by the user.

An application programmer using the TUI’s API to implement a program, first constructs the windows used in
the program. The application programmer then passes control to the input manager. The input manager accepts
input from the user of the application and sends the input onto the window that has the input focus. Text sent to a
window may cause the execute of a call-back function provided by the application programmer. The call-back
functions implement the functionality of the program.

23.2mplementation of the TUI

At the heart of the TUI is an event loop that receives characters from the user and dispatches the received
characters to the appropriate window. This process is managed by an instance of the classl nput _rmanager .

The input manager accesses the individual windows using an instance of the class W ndow_contr ol . An
instance of classW ndow_cont r ol stores windows in alinear list, the top window in the list representing the
window that has the input focus.

Associated with each window is its switch character. A switch character typed by the user selects the window
associated with this switch character as the window for input focus. As several windows may have the same
switch character, the search mechanism will cycle through windows that have the same switch character.

If the typed character is not a switch character, the character is sent to the window that is the focus for the
input.

O M A Smith - May not be reproduced without permission

330 TUI the implementation
23.2.1 Constants used in the TUI

The TUI uses several constants to define the state of the TUI and its environment. The size of the screen and the
maximum size of windows created on the screen are defined by:

package Pack_Constants is

Vdt _Max_X . constant := 79; --Col ums on VDT

Vdt _Max_Y . constant := 25; --Lines on VDT

W ndow Max_X : constant := 79; --MAX col ums w ndow
W ndow Max_Y : constant := 25; --MAX | i nes wi ndow

Various special charactersthat can be sent to or are used by the TUI, have the following values:

C _Cursor . constant Character :="'*';
C Bl ank . constant Character '
CWn_A . constant Character "H#
C _Wn_Pas . constant Character "+
C Exit : constant Character Character'Val (05); --"E

C Where : constant Character Char act er' Val (255);

C Action . constant Character Character' Val (13); --cr
C Switch : constant Character Character' Val (09); --ht
C_Menu : constant Character Character' Val (27); --esc
C Del . constant Character Character'Val (08); --"B

Various internal states and representations of actions are defined in the list below. In this list, the arrow keys
that a user presses to interact with the TUI are internally defined as a single character. This is to simplify the
internal code that processes the key's representations.

C_No_Char : constant Character := Character' Val (00);

C Left : constant Character := Character'Val (12); --~L
C R ght : constant Character := Character'Val (18); --~R
C U . constant Character := Character'Val (21); --~U
C_Down : constant Character := Character'Val (04); --"~D

end Pack_Const ants:

23.2.2 Raw input and output

The TUI works on the assumption that a character is sent immediately to the screen without any internal
processing or buffering. Likewise, the TUI receives each character asit is typed without any internal buffering or
processing.

An Ada package specification and possible implementation are shown below. In this implementation, alibrary
procedure C_No_Echo written in the language C is used to turn off the echoing of the character that is read
immediately from the keyboard.

O M A Smith - May not be reproduced without permission

TUI the implementation

331

package Raw lo is
procedure Get | mmediate(Ch:out Character);
procedure Put(Ch:in Character);
procedure Put(Str:in String);

end Raw | o;

with Interfaces.C, Ada. Text _|o;
use Interfaces.C, Ada. Text_Ilo;
package body Raw lo is

First_Tine : Boolean := True;

procedure Get_I|medi ate(Ch:out Character) is
procedure C No_Echo;
pragma I nport (C, C_No_Echo, "c_no_echo"); --Turn off echo
begi n
if First _Time then
C No_Echo; First_Tine : = Fal se;

end if;

Ada. Text _l 0. Get _| nmedi at e(Ch) ;

if Character'Pos(Ch) = 10 then --Real Return ch
Ch := Character' Val (13);

end if;

end Get _|I mmedi at e;

procedure Put(Ch:in Character) is --Raw write
begi n
Ada. Text _lo. Put(Ch); Ada.Text _Ilo.Fl ush;
end Put;
procedure Put(Str:in String) is --Raw write
begi n
Ada. Text _lo. Put(Str); Ada.Text_lo. Fl ush;
end Put ;
end Raw_| o;
Note: The Ada reference manual does not define whether get _i rmedi at e echoesthe read character.

Chapter 25 describes how this packager aw_i o may be written in another language.

23.2.3 Machine-dependent 1/0

In association with the package r aw_i o, the package Pack _nd_i o provides higher level machine specific input
procedures. For output, these allow the use of the overloaded procedures put on a character and a string. For
input, the responsibility is slightly more complex as the arrow keys are mapped onto an internal representation.

Theresponsibilities for the proceduresin the package Pack_nd_i o are:

Procedure Responsibility
Put(Ch :in Character); Write Ch immediately to the output screen.
Put(Str:in String); Write St r immediately to the output screen.
Get | nmedi ate Read a character immediately from the
(ch:out Character); |keyboard. Do not echo this character onto the
screen.

The specification for this packageis:

package Pack_Ml_lo is

procedure Put(Ch :in Character); --Put char
procedure Put(Str:in String); --Put string
procedure Cet | mmediate(Ch:out Character); --no echo

end Pack_Ml_I o;

O M A Smith - May not be reproduced without permission

332 TUI the implementation

The implementation code for Get _| mmredi at e is shown mapping the three-character ANSI sequence for the
arrow keys into an internal single character to representation. The actual character (s) generated will depend on
the operating environment. The arrow key presses are mapped upon input into the character constants C_LEFT,
C_RI GHT, C_UP and C_DOWN so that they can be processed in the program in a machine-independent way.

with Raw | o, Pack_Constants;
use Raw_|lo, Pack_Constants;
package body Pack_Ml _lo is
procedure Put(Ch:in Character) is
begi n
Raw_|l o. Put(Ch);
end Put;

procedure Put(Str:in String) is
begi n

Raw_| o. Put(Str);
end Put;

procedure Get | medi ate(Ch:out Character) is

Esc: constant Character := Character' Val (27);
begi n
Raw | 0. Get _|I nmedi ate(Ch);
if Ch = Esc then - -ESC
Raw_| 0. Get _I mmedi ate(Ch); --[
if Ch ="[" then
Raw_| 0. Get _| nmedi ate(Ch);
case Ch is
when ' A' => Ch := C_Up; --A - Up arrow
when ' B' => Ch := C_Down; --B - Down arrow
when ' C => Ch := C_Right; --C - Right arrow
when ' D => Ch := C_Left; --D - Left arrow
when others => Ch := '?"; --? - Unknown
end case;
end if;
end if;

end Get _| mmedi at e;

end Pack_M | o;

Note: In the implementation of get _i mmedi at e the arrow keys are converted into an internal single
character. The implementation for Raw_| o that | used returns three characters when an arrow key is
pressed.

One way of simplifying this procedure is to make the user of the TUI use the following control keys for
arrow movements.
Character Meaning
N Same as left arrow key
R Same asright arrow key
AU "D Same as up arrow / down arrow key

These definitions can, of course, be changed by modifying the definitionsof C_Up etc. in the package
Pack_Constants.

O M A Smith - May not be reproduced without permission

TUI theimplementation 333

23.2.4 TheclassScr een

The package Cl ass_scr een implements cursor positioning and output to an ANSI compatible display screen.
Theresponsihilities of the class are:

M ethod Responsibility
Cl ear _Screen Clearsall the screen.
Posi ti on_Cur sor Position the cursor at x, y on the screen.
Put Write information to the current position on the screen.
Note: The co-ordinate system for the screen isshownin Figure 23.3.
1,1 80,1
X
vy
1,24 80,24
Figure 23.3 Co-ordinate system for the screen.
The class specification for Cl ass_screen is:
package C ass_Screen is
procedure Put(Ch :in Character); --Put char
procedure Put(Str:in String); --Put string
procedure C ear_Screen; --Cl ear screen
procedure Position_Cursor(Col:in Positive; Row in Positive);
private
end d ass_Screen;
Note: Asthereisonly oneinstance of a screen the class Scr een contains all class methods.

The implementation of the classScr een uses the standard ANSI escape sequence to position the cursor onto
atext terminal. The overloaded proceduresput call therelevantput procedureinPack _md_i o.

with Pack_M_l o; use Pack_M_Io;
package body Cl ass_Screen is
Prefix: constant String := Character'Val (27) & "[";
procedure Put(Nin Positive); --Wite deci mal nunber

procedure Put(Ch :in Character) is
begi n

Pack_Ml_lo.Put(Ch);
end Put;

procedure Put(Str:in String) is
begi n

Pack_Ml_lo. Put(Str);
end Put;

If an ANSI terminal is not available then the bodies of the procedures Cl ear _Screen and
Posi ti on_Cursor will need to be amended to reflect the characteristics of the user's terminal or output
environment.

O M A Smith - May not be reproduced without permission

334 TUI the implementation

procedure Cl ear_Screen is --Clear screen
begi n

Put (Prefix & "2J");
end Cl ear _Screen;

procedure Position_Cursor(Col:in Positive; Row.in Positive) is
begi n

Put (Prefix); Put(Row); Put(";"); Put(Col); Put("H");
end Position_Cursor;

The procedure Put, when used to write a positive number without any leading or trailing spaces, is
implemented as a recursive procedure. This procedure is used in the package by the public procedure
Posi tion_Cursor.

procedure Put(Nin Positive) is --Wite decimal nunber
begi n

if N>= 10 then Put(N/ 10); end if;

Put (Character'Val (N rem 10 + Character' Pos('0')));
end Put;

end Cl ass_Screen;

23.3TheclassRoot _w ndow

A root window is the class from which all other windows are eventually derived. Its purpose is to define the
minimum responsibilities that any type of window must implement. These minimum responsibilities are:

M ethod Responsihility
Send_To Send a character to the window.
Switch_To Inform the window that it is to become the focus
for input.
Swi t ch_Away Inform the window that it is to lose the focus of
input.
Refresh If appropriate, re-display the window.
About Return information about awindow.
Note: There is no requirement that a window has a physical form. Thus, a root window does not need to

provide a mechanism for writing into the displayable window.

As no concrete instance of a root window is required, the specification for the class Root _wi ndow is
abstract. This abstract class will be specialized into the various forms of displayable windows on the screen.

O M A Smith - May not be reproduced without permission

TUI theimplementation 335

wi th Ada. Fi nalizati on;
use Ada. Finalization;
package C ass_Root_Wndow is
type Root_Wndow is abstract tagged |inited private;
type P_Root _Wndow is access all Root_ W ndow Cl ass;
type Attribute is (Top, Bottom Left, Right, Abs_X, Abs_Y);

procedure Send_To(The:i n out Root_W ndow,
Ch:in Character) is abstract;
procedure Switch_To(The:in out Root_Wndow) is abstract;
procedure Switch_Away(The:in out Root_Wndow) is abstract;
function About(The:in Root_ W ndow,
B:in Attribute) return Natural is abstract;
private
type Root W ndow is
abstract new Linmited_Controlled with null record;

end C ass_Root W ndow;,

23.4Theclasses| nput _manager and W ndow cont r ol

23.4.1 Specification of the classl nput _manager

The input manager controls all interactions between a user and the displayed windows. Currently the only input
deviceisthe keyboard. The responsihilities of the input manager are:

M ethod Responsihility

W ndow_Pr ol og Set up the initial window environment.

W ndow_St art Start the windowing system by accepting input
from a user of the TUI.

W ndow_Epi | og Close down the windowing system.

The Ada specification for the class| nput _nmanager is:

with Ada. Finalizati on;
use Ada. Finalization;
package C ass_I| nput _Manager is
type I nput_Manager is abstract tagged linited private;

procedure W ndow_Pr ol ogue; --Initialize wi ndow system
procedure W ndow _Start; --Start taking user input
procedure W ndow_Epi | ogue; --C ean up

private

type | nput_Manager is
abstract new Linmited_Controlled with null record;
end d ass_| nput _Manager ;

Note: Asthereisonly one screentheclass| nput _Manager hasall class methods.
23.4.2 Specification of the classW ndow_cont r ol

The class W ndow_Control has overall control of the windows displayed on the TUI screen. The
responsibilities of this class are:

M ethod Responsihility

Add_To_Li st Add a new window to the list of managed
windows.

Remove From Li st Remove a window from the list of managed
windows.

O M A Smith - May not be reproduced without permission

336 TUI the implementation

Top Make the supplied window the top window. The
top window in thelist isthe focus for input.

Fi nd Search the controlled windows for a window which
has the supplied character asits switch character.

Send_To_Top Send a character to the topmost window

Switch_To_Top Prepare the top window as the focus of input.

Swi t ch_Away_From Top | Prepare a window to have the focus of input
removed from it.

Wite_To Write to supplied window. Information has already
been clipped to fit into the window.

H de W n Remove the window from the screen.

W ndow_Fat al Report a serious error in the TUI system.

The Ada specification for this classis:

with Ada. Finalization, C ass_Root_ W ndow,
use Ada.Finalization, Cass_Root_ W ndow,
package C ass_W ndow _Control is

type Wndow Control is abstract tagged limted private;
procedure Add_To_List(P_Win P_Root_Wndow; Ch:in Character);
procedure Renmove_From List(P_Win P_Root_ W ndow);

procedure Top(P_Win P_Root_Wndow);

procedure Find(P_Wout P_Root Wndow, Ch:in Character);

procedure Send_To_Top(Ch:in Character);
procedure Switch_To_Top;
procedure Sw tch_Away_ From Top;

procedure Wite_To(P_Win P_Root_ W ndow,
X,Y:in Positive; Mes:in String);

procedure Hi de Wn(P_Win P_Root_ Wndow);

procedure Wndow Fatal (Mes:in String);

private
type W ndow Control is
abstract new Limted _Controlled with null record;

Max_Itens : constant := 10;

type Active_Wndow is record --Active w ndow
P_W: P_Root_ W ndow, -- W ndow
A _Ch: Character; --Activate character

end record;

subt ype W ndow_| ndex is Natural range 0 .. Max_ltens;
subtype W ndow_Range is Wndow_ | ndex range 1 .. Max_|tens;
type W ndow_Array is array (Wndow Range) of Active_W ndow,

The_Last _Wn: Wndow_| ndex := 0; --Last active wi ndow
The_W ndows : W ndow_ Array; --Al'l wi ndows
end Cd ass_W ndow _Control ;

Note: Asthereisonly one screen, the classW ndow_Cont r ol hasall class methods.

Associated with each window isits switch character. When typed by a user this switch character activates the
window as the focus for input.

23.4.3 Implementation of the class| nput _nmanager

O M A Smith - May not be reproduced without permission

TUI the implementation

Thel nput _manager isstarted bywi ndow_pr ol og which clears the screen ready for the construction of the

individual windows.

wi th Pack Constants, Pack Ml | o, C ass_Screen,
Cl ass_W ndow_Control, O ass_Root W ndow,
use Pack_Constants, Pack_M_|lo, d ass_Screen,
Cl ass_W ndow_Control, C ass_Root_W ndow;
package body C ass_I nput_Manager is

procedure W ndow_Prol ogue is
begi n

Cl ear _Scr een;
end W ndow_Pr ol ogue;

The procedure W ndow_St ar t starts the window system by accepting input from the user and sending this
input a character at atime to the active window. The input character is first tested (using the procedure f i nd) to

seeif it isawindow switch character. If it is, then the selected window is made the new focus for input.

procedure Wndow Start is
P_W: P_Root _W ndow;, --A wi ndow
Ch : Character; --Current Char
begi n
| oop
Get _I medi ate(Ch); - - From Keyboar d
exit when Ch = C Exit;
Find(P.W Ch); --Active wi ndow
if PW/= null then --W ndow activati on
Swi t ch_Away_From Top; -- No | onger active
Top(P_W); -- Make p_w top
Swi tch_To_Top; -- & nake active
Send_To_Top(C Were); --1n sel ected wi ndow
el se --
Send_To_Top(Ch); --Gve to top w ndow
end if;
end | oop;
Pack_Mi_I o. Put (Character' Val (0)); - - Capt ure out put
end W ndow_Start;

Thewindow epilog is currently anull procedure as no specific shutdown action is required.

procedure W ndow_Epi |l ogue is
begi n
nul | ;
end W ndow_Epi | ogue;
end d ass_| nput _Manager;

23.4.4 | mplementation of the classW ndow_cont r ol

In the implementation of the classW ndow_Cont r ol the managed windows are held in an array. If the user of
the TUI creates too many windows then the procedure W ndow_Fat al will be called. The procedure

Add_To_Li st addsanew window to the list of controlled windows.

O M A Smith - May not be reproduced without permission

338 TUI the implementation

with Cl ass_Screen;
use C ass_Screen;
package body C ass_W ndow _Control is

procedure Add_To_List(P_Win P_Root_Wndow; Ch:in Character) is
begi n
if The_Last_Wn < Max_Iltens then
The Last Wn := The Last Wn + 1;
The_W ndows(The_Last Wn) :=(PW Ch);
el se
W ndow_Fat al (" Cannot regi ster w ndow');
end if;
end Add_To_Li st;

A window isremoved from the list of controlled windows by the following procedure:

procedure Renobve_From List(P_Win P_Root_Wndow) is
begi n
for I in 1 .. The_Last_Wn |oop --Look at
i f The_Wndows(|I).P_ W= P_Wthen - - Found
for Jinl .. The_Last_Wn-1 | oop --Del ete
The_W ndows(J) := The_Wndows(J+1); -- nove up
end | oop;
The_Last_Wn := The_Last_Wn - 1; exit; --Fini sh
end if;
end | oop;
end Renove_ From Li st;

The procedure Top makes the supplied window P_Wthe top window and hence the focus for input from a

user.
procedure Top(P_Win P_Root_Wndow) is
begi n
for I in 1 .. The_Last_Wn |oop - -
i f The_Wndows(|).P_W= P_Wthen - - Found
decl are
Tnp : Active_Wndow : = The_W ndows(|);
begi n
for Jinl .. The_Last_Wn-1 | oop - -Move down
The_W ndows(J) := The_Wndows(J+1);
end | oop;
The_W ndows(The_Last_Wn) := Tnp; --New top
end;
exit;
end if;
end | oop;
end Top;

The procedure Fi nd searches the controlled windows for a window with the supplied Ch as its switch
character. If Ch isawindows switch character then a pointer to the window is returned.

O M A Smith - May not be reproduced without permission

TUI the implementation 339

begi n
PW:=null;
for 1 in 1 .. The_Last_Wn | oop
i f The_Wndows(|).A Ch = Ch then
P W:= The Wndows(|).P_W
exit;
end if;
end | oop;
end Find;

procedure Find(P_Wout P_Root_Wndow, Ch:in Character) is

When a character is received from a user of the TUI, and it is not a window switch character, it is sent to the

top window.

procedure Send_To_Top(Ch:in Character) is
begi n
if The Last Wn >= 1 then

end if;
end Send_To_Top;

Send_To(The_W ndows(The_Last_Wn).P_Wall, Ch);

When the focus of input is changed, the newly selected window isforewarned that it will become the focus for
input by sending it the message Swi t ch_To_Top. This allows the window to change its appearance to indicate

that it isthe current focus for input.

procedure Switch_To_Top is
begi n
if The _Last_ Wn >= 1 then

end if;
end Switch_To_Top;

Swi tch_To(The_W ndows(The_Last_Wn).P_Wall);

Likewise when the focus of input is taken away from a window it is forewarned by the message

Swi tch_Away_From Top.

procedure Switch_Away From Top is
begi n
if The_Last_Wn >= 1 then
Swi t ch_Away(The_W ndows(The_Last _Wn).P_Wal |
end if;
end Swi tch_Away_From Top;

);

The procedure Wi t e_To writes text to the physical screen. The window is interrogated for its absolute
position on the screen so that the physical position to write the text to can be calculated. As no window currently

overlaps, no extra clipping needs to be performed.

procedure Wite_To(P_Win P_Root_ W ndow,
X, Y:in Positive; Mes:in String) is
Abs X Crd : Positive := About(P_Wall, Abs_X);
Abs_Y Crd : Positive := About(P_Wall, Abs_Y);
begi n
Position_Cursor(Abs_X Crd+X-1, Abs_Y Crd+Y-1);
Cl ass_Screen. Put(Mes);
end Wite_To;

O M A Smith - May not be reproduced without permission

340 TUI the implementation

A window is removed from the screen with the procedure Hi de_W n. As no windows overlap in this
implementation, the area that the window occupiesis overwritten with spaces.

procedure Hide Wn(P_Win P_Root_Wndow) is
Abs_X Crd : Positive := About(P_Wall, Abs_X);
Abs_Y Crd : Positive := About(P_Wall, Abs_Y);

W dth : Positive := About(P Wall, Top);

Hei ght : Positive := About(P_Wall, Left);

Spaces : String(1 .. Wdth) := (others =>"' ");
begi n

for Hin 1 .. Height |oop
Position_Cursor(Abs_X Crd, Abs_Y Crd+H1);
Cl ass_Screen. Put (Spaces);
end | oop;
end H de_Wn;

The next procedure is concerned with processing a fatal error. The implementation simply writes the error
message directly onto the TUI screen.

procedure Wndow Fatal (Mes:in String) is
begi n

Position_Cursor(1, 1);

Put ("Wndow fatal error: "& Mes);
end W ndow Fat al ;

end d ass_W ndow_Control ;

23.5O0verlapping windows

Though not implemented here, only minor code changes are required to allow overlapping windows on the output
screen. The order in which windows are held in the class attribute t he_wi ndows can be used to indicate the
overlapping order as viewed on the screen. For example, the bottom window in the list The_W ndows is

overlapped by all other windows. The top window in the list overlaps all the other windows displayed on the
screen. An implementation of overlapping windows requires extra code to be added to Swi t ch_To_Top,
Wite_To,andH de_W nintheclassW ndow_Cont r ol to perform any necessary clipping.

23.6 Theclass W ndow

A window object has two main responsibilities:

® To provide an application program interface API for auser program.
® To provide asystem API for the manipulation of awindow.

23.6.1 Application API

The application API is available to an application program using the TUI to display and process information to
and from a window.

M ethod Responsibility

Cl ear Clear the window to spaces.

Fr amewor k Create the framework for awindow.
Make_ w ndow Make the window visible or invisible.

O M A Smith - May not be reproduced without permission

TUI theimplementation 341

New_Li ne Move to the next line in the window. This may
involve arack up of the text in the window.

Position Move to a new position for subsequent output to
the window.

Put Write information into a window.

23.6.2 Window system API

The system API should not normally be required by an application program. This API is used internally by the
TUI system to manage the windows on the screen.

M ethod Responsibility

About Return information about the window.

Call _Cal |l _Back Call the call-back function for this window.

Create Create araw window.

De_Regi ster De-register the window with the Input_manager.

Finalize Destruction of awindow.

Initialize Controlled initialization of awindow.

Mar k_Bor der Set border to indicate state of window active, or
inactive.

Refresh Re-display the window.

Regi ster Register window on screen.

Send_To Send a character to the window for processing.

Set _Cal | _Back Set acall-back function for this window.

Swi t ch_Away Make window non active.

Switch_To Make window active.

23.6.3 The specification for the classW ndow

The specification isasfollows:

wi th Pack_Constants, C ass_Root_ W ndow, C ass_Wndow Control;
use Pack_Constants, O ass_Root_Wndow, O ass_Wndow _Control;
package C ass_Wndow is

type Wndow is new Root_Wndow with private;

type P_Wndow i s access all W ndow,

type Mode is (Visible, Invisible);
type P_Cbf is access function(Str:in String) return String;

Construction of awindow is performed by:

procedure Initialize(The:in out Wndow);
procedure Finalize(The:in out Wndow);

procedure Framewor k(The:in out W ndow;
Abs_X Crd, Abs_Y Crd: Positive;
Max X Crd, Max_Y Crd: Positive;
Cb:in P_Cbf := null);

procedure Create (The:in out W ndow,
Abs X Crd, Abs_Y Crd: Positive;
Max_X Crd, Max_Y _Crd: Positive);

A call-back function is set and executed with:

O M A Smith - May not be reproduced without permission

342 TUI the implementation

procedure Set_Call_Back(The:in out Wndow, Ch:in P_Cbf);
function Call _Call _Back(The:in W ndow,
Str:in String) return String;

User output to awindow is written using:

procedure Put(The:in out Wndow, Mes:in String);
procedure Put(The:in out Wndow, Ch:in Character);
procedure Put(The:in out Wndow, Nin Integer);

procedure Position(The:in out Wndow, X Y:in Positive);
procedure Clear(The:in out Wndow);

procedure New_Line(The:in out Wndow);

procedure Refresh(The:in out Wndow);

procedure Make_ W ndow(The:in out W ndow, Mod:in Mode);
procedure Mark_Border(The:in out W ndow,

A Border:in Attribute;

Pos:in Positive; Ch:in Character);

Details about awindow are obtained using:

function About (The:in Wndow, B:in Attribute) return Natural;

Thewindow is controlled by:

procedure Switch_Away(The:in out Wndow);
procedure Switch_To(The:in out W ndow);
procedure Send_To(The:in out Wndow, Ch:in Character);

procedure Register(P_Win P_Root_Wndow, Ch:in Character);
procedure De_Register(P_Win P_Root_ Wndow);

The instance attributes of the class are:

O M A Smith - May not be reproduced without permission

TUI theimplementation 343

private
subtype Y _Cord is Positive range 1 .. Vdt_Max_ Y,
subtype X Cord is Positive range 1 .. Vdt_Max_X;

subtype Line_Index is X Cord range 1 .. W ndow Max_X;
subtype Line_Range is Line_lndex;

subt ype Line is String(Line_Range);

subtype Pane_Index is Y_Cord range 1 .. Wndow Max_Y;
subtype Pane_Range is Pane_I ndex;

type Pane_Array is array (Pane_Range) of Line;

type Wndow is new Root W ndow wi th record

Abs X : X Cord := 1; --The position on the vdt
Abs_Y : Y _Cord := 1; --The position on the vdt
C X : X Cord :=1; --Current position in w ndow
CY : Y_Cord : = 1; --Current position in w ndow
Max_ X : X Cord := 5; --X size of w ndow (+Border)
Max_Y : Y_Cord := 5; --Y size of w ndow (+Border)
Pane : Pane_Array; --Copy of w ndow in menory
Mode_ O : Mode := Invisible;--Invisible w ndow by default
Call _Back: P_Cbf := null; --Call back function

end record;

end C ass_W ndow;

23.6.4 Implementation of the classW ndow

In the implementation of the classW ndowthe procedure put is used internally to write to a specific area on the
screen.

package body C ass_Wndow is

procedure Put(The:in out W ndow,
X, Y:in Positive; Mes:in String);

The controlled procedure f i nal i ze removes a window from the screen and de-registers the window from
the input manager.

procedure Initialize(The:in out Wndow) is
begi n

nul | ;
end Initialize;

procedure Finalize(The:in out Wndow) is
begi n

Make_ W ndow(The, Invisible);

De_Regi ster(The' Unchecked_Access);
end Finalize;

The procedure cr eat e sets up the window to be at a defined position on the screen. Some simple validation
isperformed. If thisfails, the procedure wi ndows_f at al iscalled.

O M A Smith - May not be reproduced without permission

344 TUI the implementation

procedure Create(The:in out W ndow,
Abs_X Crd, Abs_Y Crd: Positive;
Max_X Crd, Max_Y Crd: Positive) is
begi n
if Max_X Od < 3 or else Max_X Crd > Wndow Max_X or el se
Max_Y _Crd < 3 or else Max_Y_Crd > Wndow_Max_Y or el se
Abs_X Crd + Max_X _Crd - 1 > Vdt_Max_X or el se
Abs Y Cd + Max_Y Crd - 1 > Vdt_Max_Y then
W ndow_Fatal ("Creati on wi ndow paraneter error");

end if;
decl are
Top_Bottom String(1..Max_X Crd) = (others =>"'-");
Spaces : String(2 .. Max_X Crd-1) := (others =>"' ");
begin
Top_Bottom(1) :="'+'; Top_Bottonm(Max_X Crd) :="'+";
The. Max_X := Max_X Crd - 2; --For border
The. Max_Y : = l\/ax_Y_Crd - 2, - - For border
The. Abs_Y := Abs_Y Crd; --Abs position screen
The. Abs_X : = Abs_X Crd; --
The. Pane(1) (1..Max_X_Crd) := Top_Bottom --Clear / set up
for Yin 2 .. Max_Y _Crd-1 | oop
The. Pane(Y) (1.. Max_X Crd): = "'|' &Spaces& |';
end | oop;
The. Pane(Max_Y_Crd) (1. . Max_X_Crd) := Top_Bottom
Position(The, 1, 1); --Top | eft hand corner
end;

end Creat €e;

The user callable procedure f r amewor k defines the position of the window on the screen. This procedure
usescr eat e to do most of the initialization of the window.

procedure Framewor k(The:in out W ndow;
Abs_X Crd, Abs_Y Crd: Positive;
Max X Crd, Max_Y Crd: Positive;
Ch:in P_Cof := null) is
begi n
Create(The, Abs_X Crd, Abs_Y Crd, Max_X Crd, Max_Y _Crd);
Make_ W ndow(The, Visible);
if Co /= null then
Set _Cal | _Back(The, Cb);
Regi ster (The' Unchecked_Access, C Switch);
el se
Regi ster (The' Unchecked_Access, C _No_Char);
end if;
end Franewor k;

The call-back functionissetbyset _cal | _back andiscaledviacal | _cal | _back.

procedure Set_Call_Back(The:in out Wndow, Cbh:in P_Cbf) is
begi n

The. Cal | _Back : = Cb;
end Set _Cal | _Back;

function Call_Call_Back(The:in Wndow,
Str:in String) return String is
begi n
if The.Call _Back /= null then
return The. Cal | _Back(Str);

end if;
return "No call back function";
end;
Note: The value returned by the call-back functionis a string.

O M A Smith - May not be reproduced without permission

TUI theimplementation 345

The procedure put writes text into the selected window from the currently selected position. If the text will
not fit in the window it is clipped to fit the window. The text is then added to the stored image of the window.
Then, if the window isvisibleit iswritten to the screen.

procedure Put(The:in out Wndow, Mes:in String) is
Add : Natural;

begi n
Add : = Mes' Length; --Length
if Add + The.C_X > The. Max_X then --Actual characters
Add := The. Max_X - The.C X + 1; -- to add
end if;
if Add >= 1 then --There are sone

The. Pane(The. C_Y+1) (The. C_X+1 .. The. C_X+Add)
= Mes(1 .. Add);

i f The. Mode_Of = Visible then --Add to screen
Put (The, The.C X+1, The.C_Y+1, Mes(1 .. Add));
end if;
The. C X : = The. C_X + Add;
el se
Put (The, The.C X+1, The.C_Y+1, "");
end if;
end Put;

The two following procedures use the above put procedure to write a character and a natural number into the
window:

procedure Put(The:in out Wndow, Ch:in Character) is
begi n

Put(The, "" & Ch); --Convert to string
end Put;

procedure Put(The:in out Wndow, N.in Integer) is
begi n

Put (The, Integer'lmage(N)); --Convert to string
end Put;

The procedure Cl ear clears awindow to spaces. The border of the window is, however, left intact.

procedure Clear(The:in out Wndow) is
Empty : String(1 .. The.Max_X) := (others =>"' ");

begi n
Positi on(The, 1, 1); --Top right hand corner
for Yin 1 .. The.Max_Y | oop --Clear text
Put (The, Enpty); New_Line(The);
end | oop;
end d ear;

The procedure New_Li ne implements the writing of a new line in the selected window. This may result in the
information in the window being scrolled. Scrolling is implemented by refreshing the whole window after
changing the contents of the remembered window.

O M A Smith - May not be reproduced without permission

346 TUI the implementation

procedure New Line(The:in out Wndow) is
begi n
if The.C_Y >= The. Max_Y t hen --Scrol |l text
for Yin 2 .. The.Max_Y | oop -- Copy up
The. Pane(Y) := The. Pane(Y+1);
end | oop;
The. Pane(The. Max_Y+1) (2. . The. Max_X+1): = (ot hers=>" ");
Ref resh(The); -- refresh
el se
The.CY := The.CY + 1; --Next line
end if;
The.C X : = 1; --At start
end New_Li ne;

The procedure Posi t i on allowsauser to set the current writing position in the window.

procedure Position(The:in out Wndow, X Y:in Positive) is
begi n
if X <= The. Max_X and Y <= The. Max_Y then
The.C X := X; The.CY :=Y;
end if;
end Position;

The procedure Ref r esh re-draws the whole of the window on the screen.

procedure Refresh(The:in out Wndow) is
begi n
if The. Mode_OF = Visible then --Visible
for Yin 1 .. The. Max_Y+2 | oop - - Text
Put (The, 1, Y,
The. Pane(Y) (1 .. The. Max_X+2)); --include border
end | oop;
Put (The, ""); --Cursor
end if;
end Refresh;

A window can be made visible or invisible by the procedure make_w ndow.

procedure Make_ W ndow(The:in out Wndow, Md:in Mde) is
begi n
if The. Mode_ O /= M then --Change so
The. Mode O : = M; --Set new node_of
case Mo is
when | nvisible => --Clear from screen
H de_W n(The' Unchecked_Access); --H de w ndow
when Visible => --Redraw on screen
Refresh(The);
end case;
end if;
end Make_W ndow;

The style of the border may be changed by mar k_bor der. A window may be customized to a style to suit

the user by using this procedure.

O M A Smith - May not be reproduced without permission

TUI theimplementation 347

procedure Mark_Border(The:in out W ndow;
A Border:in Attribute;
Pos:in Positive; Ch:in Character) is
AY, AX: Positive;
begi n
case A Border is
when Top => A X := Pos; AY =1,
when Bottom => A X := Pos; A Y := The. Max_Y+2;
when Left = AX:=1;, AY := Pos;
when Right => A X := The. Max_X+2; A Y : = Pos;
when others => nul |;
end case;
if A X <= The. Max_X+2 and then A Y <= The. Max_Y+2 t hen
The. Pane(A Y) (A X) := Ch; --Store
i f The. Mode_OF = Visible then --Update on screen
Put (The, A X, AY, Ch &"");
Put (The, "");
end if;
end if;
end Mar k_Bor der;

The procedure about returns details about the various attributes of awindow.

function About(The:in Wndow, B:in Attribute) return Natural is
begi n
case Bis
when Top | Bottom => return The. Max_X+2;
when Left | Right => return The. Max_Y+2;

when Abs_X => return The. Abs_X;
when Abs_Y => return The. Abs_Y;
when ot hers => return O;

end case;

end;

Whilst publicly visible, the following procedures are not intended to be used by an application programmer. These
procedures are used by the event loop to allow awindow to:

) Clean up before the focus of user input isremoved from the window.
) Prepare for the focus of user input to be directed at the window.

The effect of these proceduresis to mark the window with avisual indicator of its state.

procedure Switch_Away(The:in out Wndow) is
begi n

Mar k_Bor der (The, Top, 1, C Wn_Pas);
end Switch_Away;

procedure Switch_To(The:in out Wndow) is
begi n

Mar k_Border (The, Top, 1, CWn_A);
end Switch_To;

When a user types a character which is not recognized by the system as a switch character it is sent to the
window which has the focus for input. The procedure Send_To receives this character. The procedure is simply
null, because an instance of aW ndow does not process user input.

O M A Smith - May not be reproduced without permission

348 TUI the implementation

procedure Send_To(The:in out Wndow, Ch:in Character) is
begi n

nul | ;
end Send_To;

The window is registered with the input manager by the procedure regi ster and deregistered with
De_Regi ster.

procedure Register(P_Win P_Root_ W ndow,
Ch:in Character) is

begi n
Swi t ch_Away_From Top; --Regi ster wi ndow focus
Add_To List(PW Ch); - - Regi ster w ndow
Swi tch_To_Top; --Make focus

end Regi ster;

procedure De_Register(P Win P_Root_Wndow) is

begi n
Top(P_W); - - Make top
Swi t ch_Away_From Top; -- prepare for denise
Rermove_From List(P_W); --De register w ndow
Swi t ch_To_Top; --Make focus

end De_Regi ster;

The next procedure is used internally by the class to write directly to a position in a window on the screen.
This procedure usesW i t e_To inthe classW ndow_Cont r ol to perform the actual write.

procedure Put(The:in out W ndow,
X, Y:in Positive; Mes:in String) is
begi n
Wite_To(The' Unchecked_Access, X, Y, Mes);
end Put;

end d ass_W ndow;

23.7TheclassD al og

A normal window is specialized to a dialog window by overloading the following windows methods with new
responsibilities:

M ethod Responsibility
Fr amewor k Set up the window as a dialog box.
Send_To Process user input sent to the dialog window.

The Ada specification for the classDi al og isasfollows:

O M A Smith - May not be reproduced without permission

TUI theimplementation 349

wi th Pack_Constants, Cl ass_Root_ W ndow, C ass_W ndow,
use Pack_Constants, C ass_Root_ W ndow, C ass_W ndow,
package Class_Dialog is

type Dialog is new Wndow with private;

procedure Framework (The:in out Dial og;
Abs X, Abs Y:in Positive;
Max_X: in Positive;
Name:in String; Cb:in P_Cbf);

procedure Send_To(The:in out Dialog; Ch:in Character);

private
subtype Message is String(1 .. Wndow Max_X);
type Dialog is new Wndow with record
Di al og_Pos: Positive :=1; --Position in input nmessage
Di al og_Len: Positive :=1; --Length of dial ogue nmessage
Di al og_Mes: Message := (others => "' '); --lnput nessage
end record;

end C ass_Di al og;

23.7.1 Implementation of the classDi al og

The implementation of the classdi al og is:

package body Class_Dialog is

The procedure Fr amewor k constructs the style of the dialog window and registers the window with the input
manager so that user input may be directed to the window:

procedure Franmewor k(The:in out Dial og;
Abs_X, Abs_Y:in Positive;
Max_X:in Positive;
Nanme:in String; Ch:in P_Cbf) is
Dashes : String(1 .. Max_X) := (others=>'-");

begi n
Create(The, Abs_X, Abs_Y, Max_X, 5);
The. Di al og_Len : = Max_X- 2; --User input
The. Di al og_Pos : = 1; --In Dial og
Set _Cal | _Back(The, Cb); --Call back fun
Put(The, "Dialog| "); Put(The, Nane); --Dialog title
Position(The, 1, 2); Put(The, Dashes); --Line

Position(The, 1, 3); Put(The, C Cursor);--Cursor

Make_W ndow(The, Visible);
Regi ster (The' Unchecked_Access, C Switch); --Activation Chr
end Framework;

For example, the fragment of code:

decl are
Input : Dialog; -- |l nput W ndow
begi n
Framewor k(I nput, 5, 10, 22, -- 1 nput W ndow
"M Iles", User_Ilnput'access);
end;

would produce the following dialog box whose top left-hand corner on the screenis at position (5,10):

O M A Smith - May not be reproduced without permission

350 TUI the implementation

| Dial og] Mles |

User input sent to the dialog window is processed by the procedure send_t o. This stores characters in the
string Di al og_Mes. When the user enters C_ACTI ON this causes a call to an application programmer written
call-back function with the string Di al og_Mes as its parameter. The character C_ACTI ON is the normal Enter
character on the keyboard.

procedure Send_To(The:in out Dialog; Ch:in Character) is
Spaces : String(1l .. About(Wndow The), Top)) := (others =>"' ');

Res : String(1l..0);
begi n
case Ch is
when C_\Were =>
Put (The, "");

when C Action =>

Res := Call _Cal |l _Back(The,
The. Di al og_Mes(1.. The. Di al og_Pos-1))(1..0);

The. Di al og_Pos : = 1;

The.Dialog Mes := (others =>"' ');

Position(The, 1, 3); --Start

Put (The, C Cursor & Spaces); --Cear

Position(The, 2, 3); -- Cursor

Put (The, ""); -- Cur sor

when C Del =>

if The.Dialog Pos > 1 then --Can del ete
The. Di al og_Pos := The.Di alog_Pos - 1; --Mke avail.
The. Di al og_Mes(The. Dial og_Pos): =" '; --Renove
Posi ti on(The, The.D al og_Pos, 3);
Put (The, C Cursor & " "); --Overwite
Posi tion(The, The.D al og_Pos, 3);
Put (The, ""); -- Cursor

end if;

when ot hers =>
i f The.Di al og_Pos <= The. Di al og_Len then
if Chin' ' .. '~ then --Add to
The. Di al og_Mes(The.Dialog Pos) := Ch; --Save ch
Position(The, The.Dial og_Pos, 3);
Put (The, The. Di al og_Mes(The. Di al og_Pos));
Put (The, C Cursor);
The. Di al og_Pos : = The. Di al og_Pos + 1;
end if;
end if;
end case;
end Send_To;
end d ass_Di al og;

23.8 Theclass Menu

A normal window is specialized to a menu window by overloading the following procedures:

M ethod Responsibility
Fr amewor k Set up the window as a menu window.
Send_To Process user input sent to the menu window.

and adding the procedures:

O M A Smith - May not be reproduced without permission

TUI the implementation

M ethod Responsihility
Set _Up Set up the window as a menu window.
Menu_Spot Highlight the selected menu item.

The specification of the classMenu is asfollows:

351

with C ass_Root W ndow, C ass_W ndow;
use C ass_Root W ndow, Class_W ndow;
package d ass_Menu is
type Menu is new Wndow with private;
type P_Menu is access all Menu;

procedure Framewor k(The:in out Menu' d ass;

ML:in String:=""; W.:in P_Menu:=null; Cbl:in P_Cbf:=null;
M2:in String:=""; W2:in P_Menu:=null; Cb2:in P_Cbf:=n ;
MB:in String:=""; WB:in P_Menu:=null; Cb3:in P_Cbf:=null;
M in String:=""; WLkin P_Menu:=null; Cb4:in P_Cbf:=null;
Mb:in String:=""; Ws:in P_Menu:=null; Cb5:in P_Cbf:=null;
M6:in String:=""; Ws:in P_Menu:=null; Ch6:in P_Cbf:=null);

procedure Set_Up(The:in out Menu; Active:in Positive);
procedure Menu_Spot(The:in out Menu; Ch:in Character);
procedure Send_To(The:in out Menu; Ch:in Character);

Max_Menu : constant Positive := 10;
subtype Menu_Itemis String(1 .. Mx_Menu);

procedure Get_Menu_Name(The:in Menu; |:in Positive;
N out Menu_ltem);
procedure Get_Cur_Sel ected_Detail s(The:in P_Menu;
Wout P_Menu; Cb:out P_Cbf);

The private part of the specification contains details about how a menu item is stored. A menu consists of the
names of menu items and associated with each name is either a call-back function or alink to another menu item.

private
type Direction is (D _Reverse, D Forward);
procedure Next(The:in out Menu; Dir:in Direction);

type Menu_Desc is record --A nenu is:
Nanme: Menu_ltem --Nanme of nmenu item
P_M: P_Menu; --Menu w ndow
Fun : P_Cbf; --Call back function
end record;
Max_Menu_ltenms : constant := 6; - - Maxi mum nmenu itens
type Menus_Index is range 0 .. Max_Menu_ltens;
subtype Menus_Range is Menus_Index range 1 .. Max_Menu_Itens;
type Menus is array (Menus_Range) of Menu_Desc;

type Menu is new Wndow with record

Nunber . Menus_Index := 0; --Nunber of nenu itens
Cur_Men : Menus_Index := 1; --Currently selected item
Menu_Set : Menus; --Conponents of a nenu

end record;
end d ass_Menu;

O M A Smith - May not be reproduced without permission

352 TUI the implementation

23.8.1 Implementation of the classMenu

The implementation of theclassis:

wi th Pack_Const ant s;
use Pack_Constants;
package body C ass_Menu is

The procedure Set _Up popul ates the displayed menu window with the names of the menu items.

procedure Set_Up(The:in out Menu;
Active:in Positive) is
Me: Menu_ltem
begi n
Create(The, 1, 1, (1+Max_Menu)*Active+l, 3);
for I in 1 .. Active |loop --Display nmenu nanes
Get _Menu_Nane(The, |, M);
Put(The, Me); Put(The, "|");
nul | ;
end | oop;
Menu_Spot (The, C Cursor); --Mark current
end Set _Up;

In the procedure Fr amewor k the classtypeisdescribed asMenu' Cl ass. Thisis so that a run-time dispatch
will be performed on inherited procedures or functionsin any class derived from this class.

procedure Franmework(The:in out Menu' C ass;
ML:in String:=""; WL:in P_Menu:=null; Cbl:in P_Cbf:=null;
M2:in String:=""; W2:in P_Menu:=null; Cb2:in P_Cbf:=null;
MB:in String:=""; WB:in P_Menu:=null; Cb3:in P_Cbf:=null;
Mid:in String:=""; Wi:in P_Menu:=null; Cb4:in P_Cbf:=null;
Mb:in String:=""; Ws:in P_Menu:=null; Cb5:in P_Cbf:=null;
Me:in String:=""; W6:in P_Menu:=null; Cb6:in P_Cbf:=null

) is

Spaces : Menu_ltem:= (others =>" "');

Active : Menus_|ndex := 1;

procedure Set_Up(M:in String; W:in P_Menu;

Chb:in P_Cbf; Nin Menus_Index) is

begin
if M /="" then Active := N, end if; --A nenu item
The. Menu_Set(N) :=

(" " &M &Spaces(1 .. Max_Menu-1-M'Length), W, Cb);
end Set_Up;
begi n

Set _Up(M, W, Cbl, 1); Set_Up(M, W, Cb2, 2);

Set _Up(M3, WB, Cb3, 3); Set_Up(M4, W, Ch4, 4);

Set _Up(Mp, Wb, Cb5, 5); Set_Up(M, W5, Ch6, 6);

The. Nunber := Acti ve;

Set _Up(The, Positive(Active));

end Franework;
Note: The procedure set _up which is called from within framewor k constructs the internal

representation for the window.
The procedure menu_spot highlightsthe menu item selected.

O M A Smith - May not be reproduced without permission

TUI theimplementation 353

procedure Menu_Spot(The:in out Menu; Ch:in Character) is

begi n
Position(The, (Max_Menu+l)*(Positive(The. Cur_Men)-1)+1, 1);
Put (The, Ch);

end Menu_Spot ;

When user input is focused at the menu window, the arrow keys cause a new menu item to be selected.

procedure Send_To(The:in out Menu; Ch:in Character) is
begi n
Menu_Spot (The, C Bl ank);
case Ch is
when C_Ri ght => Next(The, D _Forward);
when C Left => Next(The, D _Reverse);
when others => null;
end case;
Menu_Spot (The, C Cursor);
end Send_To;

The actual calculation of the menu item selected is performed by the procedure next .

procedure Next(The:in out Menu; Dir:in Direction) is
begi n
case Dir is
when D _Forward =>
The. Cur_Men : = The. Cur_Men rem The. Nunber + 1;
when D Reverse =>
if The.Cur_Men = 1
then The. Cur _Men : = The. Nunber;
el se The. Cur_Men : = The. Cur _Men-1;
end if;
end case;
end Next;

The procedureget _nenu_i t emreturns the name of the menu item selected:

procedure Get_Menu_Name(The:in Menu; |:in Positive;
N out Menu_ltem) is
begi n
N := The. Menu_Set (Menus_I ndex(1)). Nane;

end Get Menu_Nane;

whilst get _cur _sel ected_detai |l s returns a pointer to the selected potential window and call-back
function.

procedure Get_Cur_Sel ected_Detail s(The:in P_Menu;
Wout P_Menu; Cbh:out P_Cbf) is

begi n
W := The. Menu_Set (The. Cur_Men). P_M
Cb : = The. Menu_Set (The. Cur_Men). Fun;

end CGet _Cur_Sel ected Details;

end d ass_Menu;

O M A Smith - May not be reproduced without permission

354 TUI the implementation

23.9TheclassMenu_title

A Menu window isspecializedtoaMenu_t i t | e window by overloading the following procedures:

M ethod Responsibility

Set _Up Set up the window as a menu title window.
Send_To Process user input sent to the menu title window.
Swi t ch_Away Return to the base window.

The Ada specification of theclassis:

with C ass_Root _Wndow, C ass_Wndow, C ass_Menu;
use C ass_Root Wndow, C ass_Wndow, C ass_Menu;
package Cass_Menu Title is

type Menu_Title is new Menu with private;

type P_Menu_Title is access all Menu_Title;

procedure Set_Up(The:in out Menu_Title; Active:in Positive);
procedure Send_To(The:in out Menu_Title; Ch:in Character);
procedure Switch_Away(The:in out Menu_Title);

private

Max_Act Menu : constant : = 6; - -Maxi mum dept h of nenus
type Act _Index is range O .. Max_Act_Menu;

subtype Act _Range i s Act_Index range 1 .. Max_Act_Menu;
type Act _Menus is array (Act_Range) of P_Menu;

type Menu_Title is new Menu with record

Act _Menu : Act_Menus; -- Stack of displayed nmenus
Menu_I ndex: Act _Index := 0; --Top of menu stack
end record;

end Cass_Menu_Titl e;

23.9.1 Implementation of theclassMenu_titl e

In the implementation of theclassMenu_titl e:

wi th Pack_Const ant s;
use Pack_Constants;
package body C ass_Menu _Title is

the procedure set _up iscaled from the inherited procedure f r amewor k in the classMenu. Thisis because the
call of the procedureset _up is adispatching call. Remember, the first parameter to the procedure f r amewor k
isof typeMenu' Cl ass.

procedure Set_Up(The:in out Menu_Title; Active:in Positive) is

Me: Menu_ltem
begi n
Create(The, 1, 1, (1+Max_Menu)*Active+l, 3); --Fixed size
Make_W ndow(The, Visible);
The. Act _Menu(1) := Menu(The)' Unchecked_Access;--Title nenu

The. Menu_I ndex : = 1;

for 1 in 1 .. Active |oop --CGet nenu
Get _Menu_Nane(The, |, M); -- nhanme
Put (The, Me); Put(The, "|"); -- wite
end | oop;
Regi ster (The' Unchecked_Access, C Menu); --Regi ster
Menu_Spot (The, C Cursor); --Cursor on
end Set _Up;

O M A Smith - May not be reproduced without permission

TUI theimplementation 355

The procedure send_t o implements the selection of either a new menu bar or the call of a call-back function.

procedure Send_To(The:in out Menu_Title; Ch:in Character) is
Current, Next : P_Menu;

Proc . P_Cbf;
Res : String(1..0);
begi n
Current := The. Act _Menu(The. Menu_l ndex); --Active nenu
CGet _Cur_Sel ected_Detail s(Current, Next, Proc);
case Ch is
when C \Were =>
Put(Current.all, "");

when C Action =>
if Next /= null and The. Menu_l ndex < Max_Act _Menu t hen

Make_W ndow(Current.all, Invisible); --Hi de cur.
The. Menu_l ndex : = The. Menu_Il ndex + 1; --
The. Act _Menu(The. Menu_I ndex) := Next; - - New nenu
Make W ndow(Next.all, Visible); - - Reveal
el se
if Proc /= null then --Cal
Res := Proc("Action")(1 .. 0);
end if;
end if;
when ot hers =>
Send_To(Current.all , Ch); --Treat as nornal nenu
end case;
end Send_To;

The procedure Swi t ch_Away replaces the current menu with the top level menu bar. Naturaly this
replacement isonly performed if the displayed menu is not the top level menu.

procedure Switch_Away(The:in out Menu_ Title) is

begi n
Mar k_Border (The, Top, 1, CWn_Pas); --Now inactive
if The. Menu_l ndex > 1 then --Not top level menu
Make_W ndow(The. Act _Menu(The. Menu_l ndex).all, Invisible);

The. Menu_I ndex : = 1;
Make_W ndow(The. Act _Menu(1).all, Visible); --Top |evel
end if;
end Switch_Away;

end C ass_Menu Title;

23.10 Self-assessment

) What changesin the implementation of the TUI would be required to allow for overlapping windows?

) The TUI execution is currently serial, in that messages sent to awindow are performed before control
isreturned to the input event loop. What would be the effect of |etting code associated with awindow
execute as a separate task?

23.11 Exercises

Extend the TUI by providing the following new types of window:

° A window to which| nt eger and Fl oat numbers may be written

O M A Smith - May not be reproduced without permission

356 TUI the implementation

Thiswill allow the output of formatted numeric dataaswell as textual data.

° A radio button dialog window
Thiswill allow a user to create programsin which one of several options may be selected. For example,
the conversion program shown in Section 22.3 could allow the distance to be input in feet, yards or
miles.

° A check box dialog window
Thiswill allow auser to create programs in which several different options may be selected.

° Noughts and crosses
In the previous chapter, in Section 22.5, an example program to play the game noughts and crosses was
shown. A user entering a square has to press Enter to have the move accepted. Devise and implement a
new version where the keystroke for a position is sufficient to activate a call-back function in the
application code.

° Overlapping windows
Modify the TUI so that overlapping windows are allowed. A user of the program should also be ableto
move the windows on the screen.

Build an application framework for the TUI.

° An application framework allows a user to design the layout of screens used in the program without
having to write any code. The application framework will have an interface similar to adrawing editor
and allows an application programmer to position the different types of window onto a screen. Then
when the user is satisfied with the layout, the application framework program produces an Ada program
skeleton of the application.

Graphical Representation

° Modify the TUI so that the screen display is more graphical. Y ou may wish to add procedures and
functionsthat allow for bit mapped data to be written to a window.

O M A Smith - May not be reproduced without permission

24 Scope of declared objects

This chapter describes the access rules for objects and types declared in an Ada program. In Adathe scope
or visibility of an item depends on the current lexical position in which theitem isintroduced.

24.1 Nested procedures

In Ada, nesting of procedures to an arbitrary level is allowed. Each nested procedure introduces a new lexical
level. For example, the following program is made up of two proceduresQut er and | nner . The lexical level for

each lineis shown as a comment.

procedure Quter is --+1
Quter_Int : Integer; -- 1
procedure I nner is -- 1

Inner_Int: Integer; -- +2

begin -- 2

Quter_Int := 1; -- 2

I nner_Int := 2; -- 2

end | nner; -- -2
begi n -- 1
Quter _Int := 1; -- 1
end Quter; ---1

Note: + indicatesthat a new lexical level has been started.

- indicates that the current lexical level is about to end.

The procedure Qut er isat lexical level 1 and the procedure | nner is at lexical level 2. Code that is at a
specific lexical level can access items declared either at that lexical level or declared at a lower surrounding
lexical level. For example, in the procedure | nner the integer objects | nner _I nt and Qut er _I nt can both
be accessed. However, in the procedure Qut er only the integer object Qut er _| nt can be accessed. Access to
procedures and functions follow the same rules.

It is important to realize that only items that are in a surrounding lower lexical level may be accessed. For
example, the following nonsensical program illustrates the variables and procedures that may be accessed at any
point in the program.

O M A Smith - May not be reproduced without permission

358 Scope of declared items

procedure Proc_1_1 is --+1
Int_1 1 : Integer; -- 1
procedure Proc_2 1 is -- 1
Int_2_1 : Integer; -- +2
procedure Proc_3 1 is -- 2
Int_3 1 : Integer; -- +3
begi n -- g
Int_ 11 :=11; Int_ 2 1 :=21; Int_3 1 :=31; -- S
Proc_1 1; Proc_2 1; Proc_3 1; -- 3
end Proc_3_1; -- -3
begi n -- 2
Int_1 1 :=11; Int_2 1 := 21; -- 2
Proc_1 1; Proc_2_1; Proc_3_ 1, -- 2
end Proc_2_1; -- -2
procedure Proc_2 2 is -- 1
Int_2 2: Integer; -- 2
begi n -- 2
Int_ 11 :=11; Int 2 2 := 22; -- 2
Proc_1 1; Proc_2 1; Proc_2 2; -- 2
end Proc_2_2; ca o2
begi n -- 1
Int_1 1 := 11, -- 1
Proc_1_1; Proc_2_1; Proc_2_2; -- 1
end Proc_1_1; ---1

Note: The comment after each line indicates the lexical level of theline.
A procedure or function, though introducing a new lexical level, is a declaration of a name at the
current lexical level. The parameters of the procedure or function are of course at the next lexical
level.

The layout of the above program can be schematically visualized diagrammatically as Figure 24.1:
1 2 3 Lexical level

Proc 1 1
Int_ 11 -~

Proc_2 1
Int.2_1
Proc_3 1

[he 3

Proc_2_2

Int. 2 2

Figure 24.1 Lexical levelsin an Adaprogram.

The procedure Pr oc_3_1 can access the following items:

Procedure Can access procedur es Can access variables

Proc_3_1 Proc_1 1 Int_1 1
Proc_2_1 Int_2 1
Proc_3_1 Int_3 1

However, the procedure Proc_2_ 2 cannot be accessed as thisis declared after the end of Proc_3_1. The
variablel nt _2_2 cannot be accessed as even though it is at alower lexical level it isnot in asurrounding lexical
level.

The procedure Pr oc_2_2 can access the following items:

| Procedure | Can access procedur es | Can access variables |

O M A Smith - May not be reproduced without permission

Scope of declared items 359

Proc_2_2 Proc_1 1 Int_1 1
Proc_2_1 Int_2 2
Proc_2_2

However, thevariablel nt _2 1 cannot be accessed as, even though it is at the same lexical level, itisnotina
surrounding lexical level.

24.1.1 Advantages of using nested procedures

Using anested procedure structure allows a user to hide names used in the solution of different parts of a problem.
This helps reduce the pollution of the global name space with items that only have avery limited scope.

24.1.2 Introducing a new lexical level in a procedure or function

The construct decl are .. begin
example, in the following program:

. end; introduces a new lexical level in a procedure or function. For

procedure Quter is --+1
Quter _Int I nt eger; -- 1
procedure I nner is -- 1

Inner_Int: Integer; -- +2

begi n -- 2

decl are -- 2

I : Integer; -- 13

begi n -- 3

| = 2; -- 3

end; -- -3

I nner_Int := 1; -- 2

Quter_Int := 2; -- 2

end | nner; -- -2
begi n -- 1
| nner; -- 1
end Quter; ---1

the integer object | isat lexical level 3 and can only be accessed within the begi n ... end; of the block defined
by the declare statement.

24.1.3 Holes in visbility

Because names can be overloaded, a hole in the visibility of an item can be created. For example, in the following
program thevariable i declared immediately in the procedure main is not visible for the extent of the enclosing
begi n end inthe declare block.

with Ada. Text _lo, Ada.lnteger_Text_Ilo;
use Ada. Text_lo, Ada.lnteger_Text |o;
procedure Ex5 is
I : Integer :=1; --First | declaration
begi n
Put(I); --Accesses first | =>1
decl are
I : Integer :=2; --Second | declaration
begin
Put(I); --Accesses second | => 2
end;
Put(I); --Accesses first | =>1
end Ex5;

24.1.4 Consequences of lexical levels

O M A Smith - May not be reproduced without permission

360 Scope of declared items

Thereis aperformance penalty to pay for this flexibility in accessing items at different lexical levels. This penalty
is mostly evident in the lengthy code required to perform procedure entry and exit. Optimizing compiles can
drastically simplify the code required for entry and exit to a procedure or function when only a simple nesting

structure is used.

The main code complexity arises because procedures and functions may be called recursively. A recursive
procedure or function will create each timeit is called anew stack frame.
The use of the class construct can drastically reduce the need to use heavily nested procedures.

24.2 Self-assessment

How might awhole in the visibility of avariable in a program be created.
Why cannot a procedure or function be called which isin an inner block to the current calling position.

What procedures and integer variables can code in the body of the proceduresMai n, Pr oc_A,
Pr oc_B, and Pr oc_ Caccessin the following program.

procedure Main is
A : | nteger;
procedure Proc_A is
B : Integer;
procedure Proc_B is
C : Integer,;
begin
- - Code;
end Proc_B;
procedure Proc_C is
D : Integer;
begin
- - Code;
end Proc_C,
begi n
- - Code;
end Proc_A;
E : | nteger;
begi n
- - Code
end Main;

O M A Smith - May not be reproduced without permission

25 Mixed language programming

This chapter describes how code written in another language can be called from an Ada program. This
allows the Ada programmer to take advantage of the wealth of code previously written in other languages.

25.1Linking to other code

The designers of Ada 95 realised that if the language was to prosper then it must co-exist in a world where code
was written in languages other than Ada. Ada provides mechanisms that allow code written in the programming
languages C, Fortran and COBOL to be directly called. Other languages such as C++ may also be called using the
C interface.

25.2 Selected types and functionsfrom I nt er f aces. C

The following are a selection of types and functions from the package | nt er f aces. C. This Ada package

allows the calling of functions written in the C language. In particular mechanisms are provided to convert
between instance of Adatypes and instances of C types.
25.2.1 Integer, character and floating point types

By using the following types an Ada variable or expression can be converted to a form compatible with the C

language.
Integer Types Char types Floating point types
I nt Char C _Fl oat
Short Whar T Doubl e
Long Long_Doubl e.
Size T

For example to pass the integer value | t emas a parameter to a C function that expectsa | ong doubl e the
following expression can be used: Long_Doubl e(Item).

25.2.2 C String type

The following declaration:

type Char_Array is Array (Size_T range <>) of aliased Char;

is used to declare a C array of characters. In C an array of characters terminated by the null character is used to
represent a string. For example, the following will declare a string Nane containing the text "M r anda” that
may be passed to a C function that requires a C string parameter.

Name : constant Char_Array := "M randa" & nul;

Note: Theuseof nul to represent the null character. Remember nul | isan Ada reserved word.
25.2.3 Selected functions

Character conversions:;

O M A Smith - May not be reproduced without permission

362 Mixed language programming

function To_C (Item: in Character) return Char;
function To_Ada (ltem: in Char) return Character;

String conversions:

function To.C (Item: in String;
Append_Nul :in Bool ean := True)
return char_array;

function To_Ada (Item in char_array;
TrimNul : in Boolean := True)
return String;

25.3 An Ada program calling a C function

Thefollowing Adaprogram callsthe C functiont r i pl e. The C function triple returns as an integer value triple
the integer value passed to it. Firstly an interface function Tri pl e is constructed that calls the C function
triple.

with Interfaces. C,

use Interfaces.C

function Triple(N:in Integer) return Integer is
function C Triple(N:in Int) return Int;
pragma Import (C, C Triple, "c_triple");

begi n
return Integer(CTriple(Int(N));

end Triple;

Note: The use of thetypedefinedi n I nterfaces. Cs
I nt Representsa Cint
I nt eger The Ada integer type.

In the Ada interface function the pr agma i nport is used to request the compiler to link to an externally
written procedure or function. In this case the functionc_t ri pl e writtenin C.
Thisinterface functiont r i pl e isthen called from a simple test program.

with Ada. Text _|l o, Ada.Integer_Text_lo, Triple;
use Ada. Text_lo, Ada.lnteger_Text _Io;
procedure Main is
begi n
Put ("3 Tripled is "); Put(Triple(3)); New_Line;
end Mai n;

The implementation of the functionc_tri pl einCis:

int c_triple(int n) [* function to triple argunent */

{
}

return n + n + n;

The above code when compiled and linked will produce the following output.

O M A Smith - May not be reproduced without permission

Mixed language programming 363

3 Tripled is 9

25.3.1 Another example

The C library functionst r | en returns the number of charactersinaC string. Thisfunctioniseasily called
using the Ada function To_ Cwhich will convert an Adastring into a C string. For example, the following test
program calls the C functionst r | en to deliver the number of charactersinthe Adastring” Bri ght on".

with Interfaces.C, Ada. Text _|o;
use Interfaces.C, Ada. Text_Ilo;
procedure Main is

function Strlen(Str:in String) return Integer is

function C Strlen(C Str:in char_array) return Int;

pragma I nport (C, C Strlen, "strlen");
begi n

return Integer(C Strlen(To_C(Str, Append_Nul => True)));
end Strl en;

place : constant String := "Brighton";
begi n
Put ("The length of the string [" & place & "] is " &
I nteger' I mage(strlen(place)) &" characters |ong");
New_Li ne;
end Mai n;

Note: The need to specify that a null character is appended to the string before the call to the C strl en
function.

The above test program when complied and run will produce the following results:

The length of the string [Brighton] is 8 characters |ong

25.4 An Ada packagein C

In Section 23.2.2, in the implementation of the class TUI , the package Raw | o was used as the interface
between the end user and the program. This package is responsible for the raw 1/0O between the user and the
program. It is special in that information cannot be buffered and data must be made immediately available to a
program without being echoed back onto the terminal.

This package can be written in part in Ada, but the functionGet _| medi at e that does not echo its character
hasto be writtenin C.

M ethod Responsihility

Get _|I medi at e Read a character from the keyboard, but do not echo it
onto the screen.

Put Write a character or String to the screen with no
buffering. Thus the user will see the written text
immediately.

The Ada specification of this packageis:

O M A Smith - May not be reproduced without permission

364 Mixed language programming

package Raw_lo is
procedure Get | mmediate(Ch:out Character);
procedure Put(Ch:in Character);
procedure Put(Str:in String);

end Raw | o;

and itsimplementation is as follows:

with Interfaces.C, Ada. Text |o;
use Interfaces.C, Ada. Text_Ilo;
package body Raw lo is

First _Tinme : Boolean := True;

procedure Get_I|medi ate(Ch:out Character) is
procedure C _No_Echo;
pragma I nport (C, C_No_Echo, "c_no_echo"); --Turn off echo
begi n
if First _Time then
C No_Echo; First_Tine : = Fal se;

end if;
Ada. Text _l 0. Get _I nmedi at e(Ch) ;
if Character'Pos(Ch) = 10 then --Real Return ch
Ch := Character' Val (13);
end if;
end Get | mmedi at e;
procedure Put(Ch:in Character) is --Raw write
begi n
Ada. Text _lo.Put(Ch); Ada.Text_lo.Fl ush;
end Put;
procedure Put(Str:in String) is --Raw write
begi n
Ada. Text _lo. Put(Str); Ada.Text_lo.Fl ush;
end Put ;
end Raw_| o;

Thefunctionc_no_echo isaC function that turns off the echoing of characters input to the user program.
Theimplementation in C of thisfunctionisasfollows:

O M A Smith - May not be reproduced without permission

Mixed language programming 365

/*

* Set the term nal npde to -echo -icanon

* Term nal npde reset when the character “E is received
*/

#i ncl ude <term os. h>
#i ncl ude <uni std. h>

static tcflag_t c_Iflag;
static int fd = 1; /* STDOUT _FI LENG, */
static struct term os term os_dat a;

voi d c¢_no_echo()
{
tcgetattr(fd, &ermos_data);
c_Iflag = termos_data.c_|fl ag;
termos_data.c_|flag = termos_data.c_|lflag & (~(ECHJQ | CANON| ECHOCTL));
tcsetattr(fd, TCSANOW &term os_data);
}

Thefunctionc_get _char isaC function that returns the next character input by the user. When the character
AE isreceived subsequent charactersinput will be echoed. The implementation in C of thisfunction is as follows:

char c_get_char ()
char c;

c = getchar();

if (¢ =="'\1005")

{
termos_data.c_|flag = c_Iflag;
tcsetattr(fd, TCSANOW &term os_data);

}
return (char) (c & OxFF); /* Ordinary character */
}

Note: The use of control-eto return the stream back to its normal state.

25.5Linking to FORTRAN and COBOL code

By using the package | nt er f ace. For t r an, subprograms written in FORTRAN may be called. By using the
packagel nt er f ace. COBOL subprograms written in COBOL may be called.

O M A Smith - May not be reproduced without permission

AppendIX A: Themain language features of Ada 95

Simple object declarations

ch : Character; - An 8 bhit character
i I nt eger; - A whol e nunber
f : Float; - A floating point number

Array declaration

Conputers_In_Room: array (1 .. 10) of Natural;

Type and subtype declarations

type Money is delta 0.01 digits 8; --

subtype Pnoney is Money range 0.0 .. Money' Last; --+ve Money
Enumeration declaration

type Col our is (Red, Green, Blue);

Simple statements

Sum:= 2 + 3;

Deposit(M ne, 100.00);
Block
decl are
Ch : Character;
begi n
Ch :="A,; Put(Ch);
end;

Sdlection statements

O M A Smith - May not be reproduced without permission

Appendix A 367

if Tenp < 15 then Put("Cool"); end if;
if Temp < 15 then Put("Cool"); else Put("Warm'); end if;

case Nunber is

when 2+3 => Put("ls 5");

when 7 = Put("ls 7");

when others => Put("Not 5 or 7");
end case;

L ooping statements

whi | e Rai ning | oop --VWile raining
Wor k; -- Perform work
end | oop; - -
| oop - - Repeat
Wor k; -- Perform work
exit when Sunny; -- exit fromloop when sunny
end | oop; - -

for I in1 .. 10 loop --Vary | from1l to 10
Put (1); New_Li ne; -- Wite |
end | oop; - -

Arithmetic operators

Res := A + B; --plus

Res := A - B; --m nus

Res := A * B; --mul tiplication
Res := A/ B; --Di vi sion
Res := A nod B; --Modul us

Res := A rem B; --Renmni nder

Conditional expressions

if A= B then --Equal to

if A>B then --Geater than

if A<B then --less than T Wt and Jan then -- and

if A/=Bthen --Not equal if Dy and Feb then -- or

if A>> Bthen --Geater

) -- or equal if Wt and Jan and then --

if A<=Bthen --Less if Dry and Feb and then --
-- or equal

if Ain1l .. 10 then

if Tenp > 15 and Dry then

Note: When using and t hen or or el se the conditional expression will only be evaluated as far as
necessary to produce the result of the condition. Thusinthei f statement:
if fun_one or else fun_two then
fun_t wo will not becallediff un_one deliveredtrue.

Exits from loops

O M A Smith - May not be reproduced without permission

368 Appendix A

The following code will execute until the conditionsunny is met.

| oop - - Repeat

Wor k; -- Perform work

exit when Sunny; -- exit fromloop when sunny
end | oop; - -

Class declaration and implementation

package Cl ass_Account is
type Account is tagged private;

type Money is delta 0.01 digits 8; --

procedure Wthdraw(The:in out Account;

function Balance(The:in Account) return Money;

end C ass_Account;

subtype Pnoney is Money range 0.0 .. Money' Last; --+ve Money
procedure Deposit(The:in out Account; Amount:in Pnoney);

Anount :in Pnoney; GCet:out Proney);

private
type Account is tagged record --Instance vari abl es
Bal ance_Of : Money : = 0.00; - - Anobunt on deposit
M n_Bal ance : Money : = 0.00; --M ni nrum Bal ance
end record;

package body C ass_Account is

begi n
The. Bal ance_ O : = The. Bal ance_Of + Anount;
end Deposit;

-- Procedures w t hdraw and bal ance

end Cl ass_Account;

procedure Deposit(The:in out Account; Amount:in Pnoney) is

Inheritance

with C ass_Account;

use C ass_Account;

package C ass_Interest_Account is

type Interest_Account is new Account with private;

type Inoney is digits Mney' digits+2; - -
procedure End_Of _Day(The:in out Interest_Account);
Anmount: in | money);

private

type Interest_Account is new Account with record

end O ass_Interest_Account;

procedure Interest_Credit(The:in out I|Interest_Account);
procedure Interest_Accunul ate(The:in out Interest_Account;

Dai ly_Interest_Rate: constant |npney := 0.000133680617;

--To date

Accunul ated_I nterest : Inopney := 0.00;
end record;
The_Interest_Rate : Inoney := Daily_lInterest_Rate;

O M A Smith - May not be reproduced without permission

Appendix A

369

package body C ass_lnterest_Account is

procedure Interest_Credit(The:in out Interest_Account) is
begi n
Deposi t(The, Mney(The. Accurul ated Interest)); --Rounds

The. Accunul ated_I nterest := 0.00;
end Interest _Credit;

-- Procedure calc_interest

end C ass_Interest _Account;

Program delay

del ay n. m seconds delay until a_tine;
decl are
delay n.m use Ada. Cal endar;
begi n
delay until tine_of(2000,1,1,0.0);
-- 24 Hours
end;
Task
task type Task_Factorial is - -Specification
entry Start(F.in Positive); - -Rendezvous
entry Finish(Rout Positive); - -Rendezvous

end Task_Factori al ;

task body Task_Factorial is - -1 npl ement ati on
Fact : Positive; Answer : Positive := 1;

begi n
accept Start(F:in Positive) do Fact := F; end Start;
for I in 2 .. Fact |oop Answer := Answer * |; end | oop;

accept Finish(R out Positive) do R =Answer; end Fi ni sh;
end Task_Factori al ;

Communication with a task

procedure Main is

Factorial : Task Factorial;
Res . Natural;

begi n
Factorial.Start(5); Put("Factorial 5 is ");
Factorial.Finish(Res); Put(Res, Wdth=>4); New_Li ne;

end Mai n;

Rendezvous
[sel ect statement [sel ect withel se | sel ect with del ay |

O M A Smith - May not be reproduced without permission

370 Appendix A

sel ect sel ect
accept optionl do sel ect accept
. accept
end;
or or
accept option2 do el se delay n.m
C st at enent s; statenents;
end;
end sel ect; end sel ect;
end sel ect;
Protected type
protected type PT _Buffer is --Task type specification

entry Put(Ch:in Character);

entry Get(Ch:out Character);
private
-- variabl es which cannot be sinmultaneous accessed
end PT_Buffer;

protected body PT Buffer is
entry Put(Ch:in Character)
when No_In_Queue < Queue_Size is
begin
end Put;
entry Get(Ch:in out Character)
when No In_Queue >0 is
begin

ehd.cét;

O M A Smith - May not be reproduced without permission

A ppend | X B : Components of Ada

B.1 Reserved words and operatorsin Ada 95

B.1.1Reserved words

abort abs abstract accept access al i ased
all and array at begi n body
case constant declare del ay delta digits
do el se el sif end entry exception
exit for function generic goto if

in is limted | oop nod new
not nul | of or ot hers out
package pr agna private procedure protected raise
range record rem r enanes r equeue return
rever se sel ect separate subtype t agged task
termnate then type unti | use when
whil e w th xor

B.1.20perators

= = /= > < >=

<= + - * / rem

nmod ** not abs & and

or and then or else in not in xor
Note: Some of the operators are represented by reserved words.

B.2 Attributesof objectsand types

B.2.1Scalar objects

Attribute [| Description Type of result

S' Max 1 | Deliversthe max of thetwo S' Base
arguments.

S'Mn 2 | Deliversthe min of the two S' Base
arguments.

01 S' Max denotes a function with specification:
function S Max(left, right: S Base) return S Base;
Thisisfor all scalar typesS.

02 S' M n may beused inasimilar way toS' Max

B.2.2Array objects and types

Attribute (0 | Description Type of result

O First 1 [Deliversthelower bound of the | Type of array index
first array index

O M A Smith - May not be reproduced without permission

372

Appendix B

O First(n) 1 [Deliversthelower bound of the | Type of array index
n’th array index

O Last 1 [Deliversthe upper bound of the | Type of array index
first array index

O Last (n) 1 [Deliversthe upper bound of the | Type of array index
n’th array index

O Length 1 [Deliversthe number of elements | Universal Integer
in the first array index

O Lengt h(n) 1 [Deliversthe number of elements | Universal Integer
in the n’th array index

O Range 1 | Deliversthefirst array index O'First .. O'Last
range

O Range(n) 1 | Deliversthen'th array index O'First(n) ..
range O'Last(n)

01 Only an instance of an unconstrained array may be interrogated using the attribute.

B.2.3Scalar objects and types

Attribute (0 | Description Type of result

O First Deliversthe lower bound of the | Of thetype of O
object or type

O Last Deliversthe upper bound of the | Of thetypeof O
object or type

B.2.4Discrete objects

Attribute O | Description Type of result

O Succ(val) 1 [Deliversthe successor of val Of the base type of
whichisavaueinthebasetype |T
of T.
The exception
Constraint_error israised
if the successor of O'Last is
taken.

O Pred(val) 1 | Deliversthe predecessor of val Of the base type of
whichisavaueinthebasetype |T
of T.
The exception
Constraint_error israised
if the predecessor of O'Firstis
taken.

01 The attribute will only work on an instance of discrete object and not on a discrete type.

B.2.5Task objectsand types

terminated

Attribute O | Description Type of result

O Cal | abl e 1 | Returns TRUE if thetask object | Boolean
iscallable

O Storage_si ze The storage units required for Universal Integer
each activation of the task

O Term nat ed 1 [Returns TRUE if thetask is Boolean

01

B.2.6 Floating point objects and types

The attribute will only work on an instance of task object and not on atask type.

| Attribute

| Description

| Type of result

O M A Smith - May not be reproduced without permission

Appendix B 373

T Digits The decimal precision. Universal Integer

T' Model _epsil on The absol ute value of the Universal real
difference between 1.0 and the
next representable number above

1.0.

T Safe first The lower bound of the safe Of type T
rangeof T,

T Safe_| ast The upper bound of the safe Of type T
rangeof T,

B.3Literalsin Ada

An integer can be expressed in any base from 2 to 16 by prefixing the number by its base. For example, the
number 42 to base 10 can be written as:

2#101010# A#222# 8#52# 10#42# 16#2A#
Note: The use of #' sto bracket the number.

In a number the underscore character can be used to improve readability. Usually this will be used to separate a
number into groups of three digits.

1_00 1_234.567_ 3.141 596 1_000_000
8

The number 12.34 can be written as:
0.123 4E2 1. 234E1

anumeric literal is of the type uni ver sal _i nt eger or uni ver sal _real , which alows the literal to be
used freely with any appropriate type.

B.4 Operatorsin Ada 95

Operator Operand(s) Result
and Bool ean Bool ean
or 1D Boolean array 1D Boolean array
xor modular modular
and then Bool ean Bool ean
or else
< <= > >= scalar Bool ean
1D discrete array Bool ean
=1/= any non limited operands Bool ean
in scal ar in range Bool ean
not in scalar not in range
& 1D array & 1D array 1D array
1D array & element 1D array
element & 1D array 1D array
element & element 1D array

O M A Smith - May not be reproduced without permission

374 Appendix B
+ - (rnonadi c) | numeric Same as operands
+ - (dyadic) |numeric Same as operands
* integer * integer integer
floating * floating floating
fixed * integer fixed
integer * fixed fixed
universal fixed * universal fixed universal fixed
root real * root integer root real
root integer * root real root real
/ integer / integer integer
floating / floating floating
fixed / integer fixed
universal fixed / universal fixed universal fixed
root real / root integer root real
nod rem integer integer
*x integer ** integer (>=0) integer
floating ** integer (>=0) floating
not Bool ean Bool ean
1D Bool ean array 1D Bool ean array
modul ar modular
abs numeric numeric
Note; Inthetable 1D isa shorthand for a one dimensional array.

B.4.1Priority of operatorsfrom high to low

and or xor and then or el se |Logical operators High |
= /=< <= > >= Relational operators
+ -/ & Dyadic arithmetic
join operator
- M onadic arithmetic operators
* [/ nmod rem Dyadic arithmetic operators
** abs not The others Low

B.5 Adatype hierarchy

O M A Smith - May not be reproduced without permission

Appendix B 375

enumeration

Elementary types discrete
scalar
All types
array
record
Composite types Numeric types

protected

task
B.6 Implementation requirements of standard types

Type Min value Max value Notes
I nt eger -32768 32767

Long_I nt eger -2147483648 2147483647 1

Fl oat 6 dec. places

Long_fl oat 11 dec. places 2

Min VaueThe minimal value that mu st be representable (smaller values are allowed).

Max Vaue The maximum value that must be representable (larger numbers are allowed).

Note: 1 Should be provided by an implementation if the target machine supports 32bit or longer arithmetic.

Note: 2 May be provided.

B.7 Exceptions
B.7.1Pre-defined exceptions

Exception Explanation
Constraint _Error Raised when an attempt is made to assign avalueto a
variable which does not satisfy a constraint defined on

the variable.

St orage_Error Raised when a program tries to allocate more memory
thanisavailabletoit.

Program Err or Raised when an attempt is made to execute an

erroneous action. For example, leaving afunction
without executing areturn statement.

O M A Smith - May not be reproduced without permission

376 Appendix B

| Taski ng_Error | Raised when an error occursin atask.

B.7.21/0O exceptions

Exception Explanation

Dat a_Error Raised when aget on anumeric object findstheinput is
not avalid value of this numeric type.

End_Error Raised when an attempt is made to read past the end of
thefile.

Mode_Error Raised when an inappropriate operation is attempted on
afile.

Name_Error Raised if the name used in an open call does not match
afilein the external environment.

Status_Error Raised when an operation is attempted on afile that has
not been opened or created.

Use_ Error Raised if the attempted operation is not possible on the
externa file.

B.8 Ada 95, the structure

The Ada 95 programming language is split into two distinct sections: a core language that must be implemented
and a series of annexes that may or may not be implemented. The annexes extend the language into problem
specific areas. The annexes to the language are:

Annex [Name Contents of annex:

C System programming | The provision of features that will allow the
interfacing of an Ada program to external
environments. For example, the interfacing of
Adacode to a peripheral device or to components
of the operating system interface.

D Real time systems The provision of features that will allow the
control of real-time processes.
E Distributed systems The provision of features that will allow a system

to extend beyond a single address space in a
single machine.

F Information systems | The provision of features that will allow an Ada
program to communicate with programs or
systems written in C or COBOL.

G Numerics The provision of features that will allow the
construction of numerically intense applications
H Safety and security Restrictions to the language to minimize

insecurities and areas in which compromises to
validation and verification would be made.

Note: The annexes rarely extend the syntax of the language; rather they provide extra packages to enable the
particular area to be performed.

B.9 Sour ces of infor mation

B.8.1Copies of the Ada 95 compiler

The main internet site for copies of the GNAT Ada 95 compiler is cs. nyu. edu. The latest version of the
compiler for amultitude of machinesis held in the directory pub/ gnat .

O M A Smith - May not be reproduced without permission

Appendix B 377

B.8.2Ada information on the World Wide Web

Some of the sites offering information about Ada on the World Wide Web are:

URL (Uniform Resour ce L ocator) Commentary

http://1 gl ww. epfl.ch/ Ada/ A wealth of information about Ada.
Has linksto other sites.

http://sweng.falls- The Ada Information Clearinghouse.

church. va. us/ Many Ada documents, including the
reference manual and rational.

htt p: //wuar chi ve. wust | . edu/ The PAL (Public AdaLibrary): lots of

| anguages/ ada/ Ada-related software.

http://ww. acm or g/ si gada/ The ACM SIGAdahome page

Note: The URL should be typed all on oneline:

B.8.3News groups

The usenet newsgroup conp. | ang. ada containsalively discussion about Adarelated topics.

B.8.4CD ROMs

Walnut Creek produce a CD ROM of Adarelated information including the GNAT compiler. For more
information e-mail inf o@dr om com. Alternatively seethe WWW pageht t p: / / ww. cdrom com .

B.8.5Additional infor mation on this book

The WWW page ht t p: // www. bri ght on. ac. uk/ ada95/ hone. ht m contains additional information
and programs not in this book.

O M A Smith - May not be reproduced without permission

AppendIX C: Library functions and packages

The list of library functions and packages is reproduced from the Ada 95 Reference Manual ANSI/ISO/IEC-
8652:1995. The following copyright notice appearsin the manual:

Copyright © 1992,1993,1994,1995 Intermetrics, Inc.
This copyright is assigned to the U.S. Government. All rights reserved.
This document may be copied, in whole or in part, in any formor by any means, asisor with alterations, provided
that (1) alterations are clearly marked as alterations and (2) this copyright notice is included unmodified in any
copy. Compiled copies of standard library units and examples need not contain this copyright notice so long as
the noticeisincluded in all copies of source code and documentation.

In reproducing the subset of the library functions and packages in the Ada library, the author has made

changes to layout, case, and font. This was accomplished by using various software tools and so minor changes
may have been introduced without the author's knowledge.

C.1 Genericfunction Unchecked_Conver si on

The generic functionUnchecked_Conver si on performs a conversion between two dissimilar types. The size
of the storage occupied by an instance of the types must be the same.

generic

type Source(<>) is limted private;

type Target(<>) is linmted private;
function Ada. Unchecked_Conversi on(S : Source) return Target;
pragnma Convention(lntrinsic, Ada.Unchecked Conversion);
pragna Pur e(Ada. Unchecked_Conver si on);

C.2 Genericfunction Unchecked Deal | ocati on

The generic functionUnchecked_Deal | ocat i on releases storage for storage claimed by an allocator back to
the pool of free storage.

generic
type Object(<>) is limted private;
type Nane is access bject;
procedure Ada. Unchecked_Deal | ocation(X : in out Nane);

pragma Convention(lntrinsic, Ada.Unchecked_Deal |l ocati on);
pragne Preel abor at e(Ada. Unchecked_Deal | ocati on);

C.4 The Package Standard

O M A Smith - May not be reproduced without permission

Appendix C 379

package Sandard i s
pragna Pure(S andard);

type Bool ean is (Fal se, True);

--The predefined rel ational operators for this type are as fol | ows:

--function "=" (Left, Rght : Bool ean) return Bool ean;
--function "/=" (Left, Rght : Bool ean) return Bool ean;
--function "<* (Left, Rght : Bool ean) return Bool ean;
--function "<=' (Left, Rght : Bool ean) return Bool ean;
--function ">" (Left, Rght : Bool ean) return Bool ean;
--function ">=" (Left, Rght : Bool ean) return Bool ean;

--The predefined | ogi cal operators and the predefined | ogical
--negation operator are as fol | owns:

--function "and" (Left, Rght : Bool ean) return Bool ean;
--function "or" (Left, Rght : Bool ean) return Bool ean;
--function "xor" (Left, Rght : Bool ean) return Bool ean;

--function "not" (Rght : Bool ean) return Bool ean;

--The integer type root_integer is predefined.
--The correspondi ng universal type i s universal _integer.

type Integer 1s range inpl enentati on-defi ned;

subtype Natural is Integer range O ..
subtype Positive is Integer range 1 ..

I nteger' Last;
I nteger' Last;

--The predefined operators for type Integer are as fol | ows:

--root_integer,
--type,

--Integer.

--The specification of each operator for the type

or for any additional predefined integer
is obtained by replacing Integer by the nane of the type
--in the specification of the correspondi ng operator of the type
The right operand of the exponentiation operator
--renai ns as subtype Natural .

--The floating point type root_real is predefined.
--The correspondi ng uni versal type is universal real.

--function "=" (Left, HRght : Integer'Base) return Bool ean;
--function "/=" (Left, Rght : Integer'Base) return Bool ean;
--function "<' (Left, Rght : Integer' Base) return Bool ean;
--function "<=' (Left, Rght : Integer'Base) return Bool ean;
--function ">" (Left, Rght : Integer'Base) return Bool ean;
--function ">=" (Left, Rght : Integer' Base) return Bool ean;
--function "+ (Rght : Integer'Base) return Integer' Base;
--function "-" (Rght : Integer'Base) return Integer' Base;
--function "abs" (Rght : Integer' Base) return Integer' Base;
--function "+' (Left, Rght : Integer'Base) return Integer' Base;
--function "-" (Left, Rght : Integer'Base) return Integer' Base;
--function "*" (Left, Rght : Integer'Base) return Integer' Base;
--function "/" (Left, Rght : Integer' Base) return Integer' Base;
--function "remi (Left, Rght : Integer' Base) return Integer' Base;
--function "nod" (Left, Rght : Integer' Base) return |nteger' Base;
--function "**" (Left : Integer' Base; Rght : Natural) return Integer' Base;

O M A Smith - May not be reproduced without permission

380 Appendix C

type Hoat is digits inpl enentation-defined;

--The predefined operators for this type are as fol | ows:

--function "=" (Left, Rght : Hoat) return Bool ean;
--function "/=" (Left, Rght : Hoat) return Bool ean;
--function "<' (Left, Rght : Hoat) return Bool ean;
--function "<=' (Left, Rght : Hoat) return Bool ean;

--function ">" (Left, Rght : Hoat) return Bool ean;
--function ">=" (Left, Rght : Hoat) return Bool ean;

--function "+' (Rght : Hoat) return Hoat;
--function "-" (Rght : Hoat) return Hoat;
--function "abs" (Rght : Hoat) return Hoat;

--function "+' (Left, Rght : Hoat) return Hoat;
--function "-" (Left, Rght : Hoat) return Hoat;
--function "*" (Left, Rght : Hoat) return H oat;
--function "/" (Left, Rght : Hoat) return Hoat;

--function "**" (Left : Hoat; Rght : Integer' Base) return Hoat;

--The specification of each operator for the type root_real, or for
--any additional predefined floating point type, is obtained by
--replacing Hoat by the nane of the type in the specification of the
--corresponding operator of the type Hoat.

--In addition, the followng operators are predefined for the root
--nuneri c types:

function "*" (Left : root_integer; Rght : root_real)
return root_real;

function "*" (Left : root_real; Rght : root_integer)
return root_real;

function"/" (Left : root_real; Rght : root_integer)
return root_real;

--The type universal _fixed is predefined.
--The only mul tiplying operators defined between
--fixed point types are

function "*" (Left : universal fixed; Rght : universal fixed)
return uni versal _fixed;

function"/" (Left : universal fixed; Rght : universal fixed)
return uni versal _fixed;
--The decl aration of type Character is based on the standard | SO 8859-1 character set.

--There are no character literals corresponding to the positions forcontrol characters.
--They are indicated initalics inthis definition. See 3.5.2.

O M A Smith - May not be reproduced without permission

Appendix C 381

type Character iIs

(nul, soh, stx, etx, eot, eng, ack, bel,
bs, ht, | f, vt, ff, cr, S0, Si,
dle, dcl, dc2, dc3, dc4, nak, syn, etbh,
can, em sub, esc, fs, gs, rs, us,

o Yy . # $, '%, '&, :
1(1, I)l, I*l, |+|’ |,|, |_|’ ' l, |/|’
o, '1, '2 '3, 4 5 '6, '7
g g o] S
‘@, 'A, 'B, 'C, ‘D, 'E, 'F, 'G,
T N T . 'M 'N. 'O,
‘P, 'Q, 'R, 'S, ‘T, U, 'V, "W,
X,y 'z, [, N R, T

, 'a, 'pb, 'c, a, e, 'f', g,
h, ity g, Tk, I, 'm, 'n ‘o,
‘p, 'q, 'r', s, tt, 'u, 'V, 'w,
X, oy, o, 1Y,y '~ del,
reserved 128, reserved 129, bph, nbh,
reserved 132, nel , Ssa, esa,
hts, htj, wvts, pld, plu, ri, ss2, ss3
dcs, pul, pu2, sts, cch, nmw spa, epa,

sos, reserved 153, sci, csi,
st, 0sc, pm apc,

-)i

--The predefined operators for the type Character are the sane as for

--any enuneration type.

--The decl aration of type Wde Character is based on the standard | SO 10646 BWP character set.
--The first 256 positions have the sane contents as type Character. See 3.5.2.

type Wde_Character is (nul, soh ... FFFE HFF);

package ASA| is ... end AAIl; --bsol escent; see J.5

--Predefined string types:

type Sring is array(Positive range <) of Character;
pragna Pack(Sring);

--The predefined operators for this type are as fol | ows:

-- function "=" (Left, Rght: Sring) return Bool ean;
-- function "/=" (Left, Rght: Sring) return Bool ean;
-- function "<' (Left, Rght: Sring) return Bool ean;
-- function "<=" (Left, Rght: Sring) return Bool ean;
-- function ">" (Left, Rght: Sring) return Bool ean;
-- function ">=" (Left, Rght: Sring) return Bool ean;

N

O M A Smith - May not be reproduced without permission

382 Appendix C

-- function "& (Left: Sring; Rght: Sring) return Sring;
-- function "&' (Left: Character; Rght: Sring) return Sring;
-- function "&' (Left: Sring; Rght: Gharacter) return Sring;
-- function "& (Left: Character; Rght: Character) return Sring;

type Wde Sring is array(Positive range <) of Wde_Character;
pragna Pack(\Wde _Sring);

--The predefined operators for this type correspond to those for Sring
type Duration is delta i npl enentati on-defi ned range i npl enent ati on-def i ned;

--The predefined operators for the type Duration are the sane as for
--any fixed point type.

--The predefined excepti ons:

onstraint_Eror: exception;

ProgramBEror : exception;

Sorage Bror : exception;

Tasking_Eror : exception;
end S andard;

C.5 ThePackage Ada. Text | o

In the package Ada. St andar d the following parameter arguments are used:

Parameter name Purpose

af t The number of digits after the decimal place

base The base of the number.

exp The number of characters in the exponent. For the

number 123.45678:

exp=>0 would give aformat of => 123.45678
exp=>2 would give aformat of => 1.2345678E+2
exp=>4 would give aformat of => 1.2345678E+002

file file_type:

The file descriptor which is read from or written to.
file_access:

The accessvalue of thefi | e_t ype.

fore The number of digits before the decimal place
form Form of the created output file.

item Theitem to be read / written.

| ast Thelast character read from the string.

node The mode of the operation read, write or append.
name The name of thefile as a String.

wi dt h The number of charactersto beread / written

O M A Smith - May not be reproduced without permission

Appendix C 383

package Ada. | O Exceptions is
pragna Pure(l Q Bxceptions);

Satus BEror : exception

Mde Eror 1 exceptior
Nane Bror : exception
Wse _Eror . exception
Device BEror : exception
End Bror . exception
Data Eror : exception

Layout Eror : exception

end Ada. | O Excepti ons;

O M A Smith - May not be reproduced without permission

384 Appendix C

with Ada. | O Excepti ons;
package Ada. Text 10is

type File Type is linted private;
type Fle Mde is (InFle, Quit_Fle, Append Fle);
type Qount is range O .. inplementation-defined;

subt ype Positive Gunt is Gunt range 1 .. Gount' Last;
Uhbounded : constant Gount := 0; --line and page | ength

subtype Feld is Integer range O .. inplenentation-defined;
subtype Nuniber_Base is Integer range 2 .. 16;

type Type _Set is (Lower_Gase, Wper_GCase);
--H | e Managenent
procedure Geate (Fle: inout Hle Type;
Mde : inFHle Mde :=Qt _Fle;

Nane : in Sring
Form: in Sring

procedure Qpen (Fle: in out Fle Type;
Mde : in HIle_Mde;
Nane @ in Sring;
Form: in Sring :="");

procedure dose (Fle: inout Fle Type);
procedure Delete (Fle: in out Fle Type);
procedure Reset (Fle: inout Fle Type; Mde : in Hle Mde);
procedure Reset (Fle: inout Fle Type);

function Mde (Fle: in Fle Type) return Fle Mde;
function Name (Fle: in Fle_ Type) return Sring;
function Form (FHle: in Fle_Type) return Sring;

function Is_ Qen(Fle : in Fle_Type) return Bool ean;
--@ntrol of default input and output files

procedure Set_Input (Fle: in Hle Type);
procedure Set_Qutput(Fle : in Fle Type);
procedure Set_ Eror (Fle: inFle Type);

function Sandard Input return Hle_Type;
function Sandard Qutput return F | e_Type;
function Sandard Bror return Fle_Type;

function Qurrent_Input return R le_Type;
function Qurrent_Qutput return Fle_Type;
function Qurrent_Eror return Fle_Type;

type FHle Access is access constant Fle Type;

function Sandard Input return H | e_Access;
function Sandard Qutput return F | e_Access;
function Sandard Bror return F|e_Access;

function Qurrent _Input return F | e_Access;
function Qurrent_Qutput return F | e_Access;
function Qurrent_BEror return Fle_Access;

--Buffer control
procedure Hush (File: in out Fle Type);
procedure H ush;

O M A Smith - May not be reproduced without permission

Appendix C

385

pr ocedur e
pr ocedur e

pr ocedur e
pr ocedur e

functi on
function

functi on
function

-- @l unm,

pr ocedur e
pr ocedur e
pr ocedur e
pr ocedur e

function
function

pr ocedur e
pr ocedur e

pr ocedur e
pr ocedur e

function
functi on

function
functi on

pr ocedur e
pr ocedur e

pr ocedur e
pr ocedur e

pr ocedur e
pr ocedur e

pr ocedur e
pr ocedur e

pr ocedur e

--Secification of |ine and page | engths

Set_Line Length(Fle: in Fle Type; To : in Qount);
Set_Line Length(To : in Qount);

Set_Page Length(Fle: in Fle Type; To : in Gount);
Set_Page Length(To : in Qount);

Line Length(Fle : in Fle_Type) return Gunt;
Line_Length return Gount;

Page Length(File : in Fle_Type) return Gunt;
Page Length return Gount;

Line, and Page Gontroal

Newline (Fle :in Rle_ Type;

Sacing : in Positive Qunt = 1);
New line (Spacing : in Positive Gount :=1);
ipline (Fle :in Fle_Type;

Sacing : in Positive Qunt = 1);
ip Line (Spacing @ in Positive Gunt := 1);

BErd 0 _Line(Fle : inFHle_Type) return Bool ean;
End @ Line return Bool ean;

NewPage (Fle: inFle_Type);
New Page;
Xip Page (Fle: inFle Type);
i p_Page;

BEhd O _Page(Fle : inFle_Type) return Bool ean;
End_G _Page return Bool ean;

BEhd O Fle(Fle: inFle_Type) return Bool ean;
BEhd 0 _Fle return Bool ean;

Set_ @l (Fle: inFle Type; To : in Positive Gunt);
St @l (To : in Positive Gunt);

Set_Line(Fle: inFHle Type; To : in Positive Gunt);
Set_Lineg(To : in Positive Qunt);

function @l (Fle: inFle Type) return Positive Gunt;
function Gl return Positive Gount;

function Line(Fle : inFle Type) return Positive Gunt;
function Line return Positive Gount;

function Page(File : in Fle Type) return Positive Gount;
function Page return Positive Gount;

--Character | nput-Qut put

Get(Fle: in Fle Type; Item: out Character);
Get(ltem: out Character);

Pit(Fle: in Hle Type; Item: in Character);
Put(Item: in Character);

Look_Ahead (File :in Hle_ Type;
Item : out Character;
End G _Line : out Bool ean);

O M A Smith - May not be reproduced without permission

386 Appendix C

procedure Look Ahead (Item : out Character;
End G _Line : out Bool ean);
procedure Get _Immedi ate(H e in Hle_ Type;
Item : out Character);
procedure Get_| nmedi at e(ltem : out Character);
procedure Get_| nmedi ate(F |l e in Fle_Type;
Item : out Character;
Availabl e : out Bool ean);
procedure Get_| nmedi ate(ltem : out Character;

Availabl e : out Bool ean);
--Sring | nput - Qut put

procedure Get(Fle: in Fle Type; Item: out Sring);
procedure Get(ltem: out Sring);

procedure Put(Fle : in Fle Type; Item: in Sring);
procedure Put(ltem: in Sring);

procedure Get_Line(Fle: in Hle Type;
Item: out Sring;
Last : out Natural);
procedure Get_Line(ltem: out Sring; Last : out Natural);

procedure Put_Line(Fle: in FHle Type; Item: in Sring);
procedure Put_Line(ltem: in Sring);

--Generi ¢ packages for Input-Qitput of Integer Types

generic
type Numis range <;
package Integer |Ois

Default_ Wdth : Feld := NumWdth;
Default_Base : Nunber_Base : = 10;

procedure Get(File : in Fle_ Type;
Item : out Num
Wdth : in FHeld :=0);

procedure Get(ltem : out Num
Wdth: in Held:=0);

procedure Put(FHle : in Hle_Type;

Item : in Nm

Wdth : in Feld := Default_Wdth;

Base : in Nunber_Base := Default_Base);
procedure Put(Item : in Nm

Wdth : in Held := Defaul t_Wdth;

Base : in Nunber_Base := Default_Base);
procedure Gt(Fom: in Sring;

Item: out Num

Last : out Positive);
procedure Put(To : out Sring;

Item: in Num

Base : in Nunber_Base := Default _Base);

end Integer_1Q
generic

type Numis nod <
package Mdul ar_|Ois

Default_Wdth : Feld := NumWdth;
Default _Base : Nunber Base : = 10;

O M A Smith - May not be reproduced without permission

Appendix C 387

end Mdular_1Q
--Generi c packages for |

generic
package Hoat 1Ois

Default Fore : Feld
Default_Aft : Held
Default_Exp : Feld

procedure Get(FHle
Item :
Wdth :
procedure Get(ltem :
Wdth :

procedure Put(FHle :
Item:
Fore :
At
Exp
procedure Put(ltem:
Fore :
At
Exp

procedure Get(Fom:
Item:
Last :
procedure Put (To
Item:
At
Exp
end Hoat_1Q

generic
type Nimis delta <;
package Fixed IOis

Default Fore : FHeld
Default_Aft : FHeld
Default BExp : FHeld

procedure Get(FHle
Item :

1in
cin

cin
1in

procedure Gt(Hle : 1n Hle Type;

Item : out Num

Wdth : in FHeld :=0);
procedure Get(ltem : out Num

Wdth: in Held:=0);
procedure Put(FHle : in Hle_Type;

Item : in Nm

Wdth : in Feld := Default_Wdth;

Base : in Nunber_Base := Default_Base);
procedure Put(Item : in Nm

Wdth : in Held := Defaul t_Wdth;

Base : in Nunber_Base := Default_Base);
procedure Get(Fom: in Sring;

Item: out Num

Last : out Positive);
procedure Put(To : out Sring;

Item: in Num

Base : in Nunber_Base := Default _Base);

nput - Qut put of Real Types

type Nimis digits <

=2

= NimDgits-1;

=3

:in Fle_Type;

out Num

in Held:=0);

out Num

in Held:=0);

in FHle Type;

in Num

in Held := Default_Fore;
Feld:=Default_Aft;
Feld:= Default_Exp);

in Num

in Held := Default_Fore;
Feld:= Default_Aft;
Feld:= Default_Exp);

in Sring;

out Num

out Positive);

:out Sring;
in Num

in Held := Default_Aft;
in Held := Default_Exp);

= NumFore;
Num Af t;

0;

:in Fle_Type;

out Num

O M A Smith - May not be reproduced without permission

388 Appendix C

Wdth: in Held :=0);
procedure Get(ltem : out Num
Wdth: in Held:=0);

procedure Put(Fle : in Fle_Type,
Item: in Num

Fore : in Held := Default_Fore;

At :inHeld:= Default_Aft;

Exp : inFeld := Default_Exp);
procedure Put(ltem: in Num

Fore : in Held := Default_Fore;

At :inHeld:=Dfault At;

Bxp : inHeld :=Default_Exp);

procedure Get(Fom: in Sring;
Item: out Num
Last : out Positive);
procedure Put(To : out Sring;
Item: in Num
At :inFHeld:= Default_Aft;
Exp : inFeld := Default_Exp);
end Fxed 1Q

generic
type Nimis delta < digits <
package Decinal _|Ois

Default Fore : Held := NmFore;
Default Afit @ Held:= NIMAft;
Default Exp : Feld:=0;

procedure Get(FHle : in HFle Type;
Item : out Num
Wdth: in Feld:=0);

procedure Get(ltem : out Num
Wdth: in Held:=0);

procedure Put(Fle : in Fle_ Type;
[tem: in Num

Fore : in Held := Default_Fore;

At :inHeld:= Default_Aft;

Exp : inHeld:= Default_Exp);
procedure Put(ltem: in Num

Fore : in Held := Default_Fore;

At :inHeld:=Dfault At;

Exp : inHeld :=Default_Exp);

procedure Get(Fom: in Sring;
Item: out Num
Last : out Positive);
procedure Put(To : out Sring;

Iltem: in Num
At :inFHeld:= Default_Aft;
Bxp : inHeld:=Default_Exp);

end Decinal _1Q
--Generi ¢ package for |nput-Qutput of Enunerati on Types
generic
type Enumis (<);
package Enuneration |Ois

Default_Wdth : FHeld:=0;
Default_Setting : Type_ Set := Lpper_GCase;

procedure Get(Fle : in FHle_ Type;
Item: out Enum);

O M A Smith - May not be reproduced without permission

Appendix C 389

procedure Get(ltem: out Enum);
procedure Put(Fle : in FHle Type;
Item : in Bwum
Wdth: in Feld = Defaul t_Wodt h;
St @ oin Type_Set := Default_Setting);
procedure Put(ltem : in Enum
Wdth: in Feld = Defaul t_Wodt h;
St @ in Type_Set := Default_Setting);
procedure Get(Fom: in Sring;
Item: out Ehum
Last : out Positive);
procedure Put(To : out Sring;
Item: in BEwm
Set :in Type Set := Default_Setting);
end BEhuneration | Q
- - Except i ons
Satus Bror : exception renanes | Q Exceptions. Satus_Eror;
Mde Bror : exception renanes | Q Exceptions. Mde Eror;
Nane_Eror @ exception renanes | Q Exceptions. Nane_Eror;
We Bror : exception renanes | O Exceptions. Wse Eror;
Device BEror : exception renanes | Q Exceptions. Device Eror;
End Eror : exception renanes | O Exceptions. End_Eror;
Data Eror : exception renanes | O Exceptions.Data Eror;
Layout _Eror : exception renanes | Q Exceptions. Layout_Eror;
private

. --not specified by the | anguage

end Ada. Text | Q

Inthe package Ada. Sequent i al _i o thefollowing parameter arguments are used:

C.6 The Package Ada. Sequential io

Parameter name

Purpose

file

file_type:
The file descriptor which is read from or written to.

form Form of the created output file.
node The mode of the operation read, write or append.
name The name of thefile as a String.

O M A Smith - May not be reproduced without permission

390 Appendix C

with Ada. | O Excepti ons;
generic

type Henent_Type(<) is private;
package Ada. Sequential 10is

type Fle Type is linmted private;
type Fle Mde is (InFle, Qit_Fle, Append Fle);
--H | e managenent

procedure Qeate(Fle : in out Fle Type;
Mde : in Fle Mde := Quit_ Fle;

Nane : in Sring :="";

llll);

Form: in Sring :
procedure Qpen (File : in out Fle_Type;

Mde : in FHle_Mde;

Narme @ in Sring;

Form: in Sring :="");

procedure Aose (File: in out Fle Type);

procedure Delete(Fle : in out Fle Type);

procedure Reset (File: in out File Type; Mde : in Fle Mde);
procedure Reset (File : in out Fle Type);

function Mde (Fle: in Fle Type) return FH|e_Mde;
function Nane (Fle: in FHle_Type) return Sring;

function Form (Fle: in FHle Type) return Sring;

function Is Qpen(Fle : in FHle_Type) return Bool ean;

--Input and out put operations

procedure Read (Fle: in Fle Type; Item: out Henent_Type);
procedure Wite (File: in Fle Type; Item: in Henent_Type);

function Bnd G _Fle(Fle : in Fle_Type) return Bool ean;
- - Excepti ons

Satus_Eror : exception renanes | QExceptions. Satus_Eror;

Mde BEror : exception renanes | O Exceptions. Mde Eror;

Nane Bror : exception renanes | Q Exceptions. Nane Eror;

Wse Eror : exception renanes | O Exceptions. Wse Eror;

Device Eror : exception renanes | O Bxceptions. Device Eror;

End Bror . exception renanes | Q Exceptions. End Eror;

Data Bror : exception renanes | O Exceptions.Data Eror;
private

... --not specified by the | anguage
end Ada. Sequential _1Q

C.7 The Package Ada. Char act er s. Handl i ng

O M A Smith - May not be reproduced without permission

Appendix C 391

package Ada. Characters. Handling is
pragna Preel aborat e(Handl i ng) ;

--Character classification functions

function I's_Gontrol (Item: in Character) return Bool ean;
function I's_Gaphic (Item: in Character) return Bool ean;
function Is_Letter (Item: in Character) return Bool ean;
function I's_Lower (Item: in Character) return Bool ean;
function I's_Uper (Item: in Character) return Bool ean;
function |s_Basic (Item: in Character) return Bool ean;
function Is Dagit (Item: in Character) return Bool ean;
function Is Decinal_Dgit (Item: in Character) return Bool ean

renanes Is Dagit;
function Is_Hexadecinal _DOgit (Item: in Character) return Bool ean;
function I's_A phanuneri c (Item: in Character) return Bool ean;
function I's_Speci a (Item: in Character) return Bool ean;
--Qnversion functions for Character and Sring

function To_Lower (Item: in Character) return Character;
function To_Uper (Item: in Character) return Character;
function To Basic (Item: in Character) return Character;

function To_Lower (Item: in Sring) return Sring;
function To Wpper (Item: in Sring) return Sring;
function To Basic (Item: in Sring) return Sring;

--Aassifications of and conversions between Character and | SO 646

subtype 150646 is
Character range Character' Val (0) .. Character' Val (127);

function Is_1S0646 (Item: in Character) return Bool ean;
function Is_ 190646 (Item: in Sring) return Bool ean;

function To | SO 646 (Item > in Character;
Substitute : in1S0646 :=" ")
return | SO 646;
function To | SO 646 (Item cin ˚
Substitute : in 180646 :=" ")

return Sring;
--Qassifications of and conversions between Wde Character and Character.

function I's_Character (Item: in Wde Character) return Bool ean;
function Is_Sring (Item: in Wde Sring) return Bool ean;

function To_Character (ltem : in Wde_Character;
Substitute : in Character :="' ")
return Character;
function To_Sring (Item > in Wde_Sring;
Substitute : in Character :="' ")

return Sring;
function To Wde Character (Item: in Character) return Wde_Character;
function To Wde_String (Item: in Sring) return Wde_String;

end Ada. Charact ers. Handl i ng;

C.8 The Package Ada. Stri ngs. Bounded

Inthe package Ada. St ri ngs. Bounded the following parameter arguments are used:

O M A Smith - May not be reproduced without permission

392 Appendix C

Parameter name Purpose

drop = Left (Compressing totheright)
Ri ght (Compressing to the left)
Error (StringsLengt h_err or propagated)

goi ng Forward (Forward search)

w th Ada. Srings. Mps;
package Ada. Strings. Bounded i s
pragna Preel abor at e(Bounded) ;
generic
Mx : Positive; --Maxi num| ength of a Bounded Sring
package Generic_Bounded_Lengthis
Max_Length : constant Positive := Mx;
type Bounded String is private;
Nl | _Bounded Sring : constant Bounded Sri ng;
subtype Length Range is Natural range O .. Mix_Length;

function Length (Source : in Bounded Sring) return Length Range;

O M A Smith - May not be reproduced without permission

Appendix C

393

return Bounded Sring;

Drop
return Bounded Sri ng;

function Append (Left
Rght :

Drop

return Bounded_Sri ng;

function Append (Left

Rght :

Drop

return Bounded Sri ng;

function Append (Left

Rght :

Drop

return Bounded_Sri ng;

function Append (Left

Rght :

Drop

return Bounded Sri ng;

procedure Append (Source
0rop

procedure Append (Source
Drop

procedur e Append (Source

Orop

return Bounded_Sri ng;

function "&' (Left :
return Bounded_Sri ng;

function "&' (Left :
return Bounded_Sri ng;

function "& (Left :
return Bounded Sri ng;

function "& (Left :
return Bounded Sring;

function Henent (Source :
| ndex
return Character;

function To_ Sring (Source :

function Append (Left, Rght :

: in Truncation

: in Truncation

New | tem:

New | tem:

New | tem:

function "&' (Left, Rght :

inSring; Rght :

in Bounded Sring; Rght :

in Character; Rght :

procedure Repl ace H enent (Source :
| ndex
By > in Character);

--nversi on, Gncatenation, and Sel ection functions

function To Bounded Sring (Source : in Sring;
Drop

in Truncation := Eror)

in Bounded_Sring) return Sring;

i n Bounded Sri ng;

:in Truncation := Eror)

. in Bounded_Sring;
in Sring;
:in Truncation := Eror)

:in ˚
i n Bounded_Sri ng;

= FEror)

: in Bounded_String;
in Character;
:in Truncation :=Eror)

:in Character;
i n Bounded_Sring;

= FEror)

in out Bounded Sri ng;
in Bounded_Sri ng;

:in Truncation :=FEror);
in out Bounded Sring;
in Sring;
:in Truncation :=FEror);
in out Bounded Sring;
in Character;
:in Truncation :=FEror);
i n Bounded_Sri ng)
in Bounded Sring; Rght : in Sring)

in Bounded Sri ng)

in Character)

in Bounded_Sri ng)

in Bounded Sring;
:in Positive)

in out Bounded Sring;
: in Positive;

O M A Smith - May not be reproduced without permission

394 Appendix C

function

function
function
return

function
return

function

function
return

function
return

function

function
return

function
return

function

function
return

function
return

function

function
return

function
return

function

function

function

function

Sice (Source : in Bounded Sring;
Low : in Positive;
Hgh : inNatural)

return Sring;

"=" (Left, Right : in Bounded_String) return Bool ean;
"=' (Left : in Bounded Sring; Rght : in Sring)
Bool ean;

"= (Left : in Sring; Hght : in Bounded Sring)
Bool ean;

"<' (Left, Rght : in Bounded _Sring) return Bool ean;

"<' (Left : in Bounded Sring; Rght : in Sring)
Bool ean;

"<'" (Left : in Sring; Rght : in Bounded Sring)
Bool ean;

"<=" (Left, Rght : in Bounded_Sring) return Bool ean;

"<=" (Left : in Bounded Sring; Rght : in Sring)
Bool ean;

"<=' (Left : in Sring; Rght : in Bounded Sring)
Bool ean;

">" (Left, Rght : in Bounded Sring) return Bool ean;

">" (Left : in Bounded Sring; Rght : in Sring)
Bool ean;

">" (Left : in Sring; Rght : in Bounded Sring)
Bool ean;

">=" (Left, Rght : in Bounded Sring) return Bool ean;

">=" (Left : in Bounded Sring; Rght : in Sring)
Bool ean;

">=" (Left : in Sring; Rght : in Bounded Sring)
Bool ean;

--Search functions

return Natural ;

Index (Source : in Bounded Sring;
Pattern : in Sring;
@i ng :in DOrection : = Forward;
Mypping : in Mps. Charact er _Mappi ng

1= Maps. ldentity)

Index (Source : in Bounded Sring;
Pattern : in Sring;
@i ng :in Orection := Forward;

Mipping : in Maps. Charact er _Mippi ng_Funct i on)

return Natural ;

I ndex (Source : in Bounded_String;
Set :in Mps. Character_Set;
Test : in Menbership : = Inside;
@ing : inDOrection := Forward)

return Natural ;

I ndex_Non_B ank (Source : in Bounded Sring;

O M A Smith - May not be reproduced without permission

Appendix C

395

€3]
return Natural ;

function Gount (Source : in
Pattern : in
Mpping : in

return Natural ;

function Gount (Source : in
Pattern : in

Mpping : in
return Natural ;

function Gount (Source : in
Set cin
return Natural ;

procedure H nd_Token (Source
Set
Test
Frst
Last

--Sring transl ation subprograns

function Transl ate (Source
Mappi ng :
return Bounded_Sri ng;

procedure Transl ate (Source
Mappi ng
function Transl ate (Source

Mappi ng :
return Bounded_Sri ng;

procedure Transl ate (Source

Mappi ng

--Sring transfornati on subprogr

function Repl ace_Sice (Source

ng : In Drection := Forward)

Bounded S ri ng;
Sring;
Maps. Char act er _Mappi ng

1= Mps. I dentity)

Bounded_Sri ng;
Sring;
Maps. Char act er_Myppi ng_Funct i on)

Bounded Sri ng;
Mips. Char act er _Set)

: in Bounded Sring;

:in Mps. Character_Set;
:in Menber shi p;

: out Positive;

:out Natural);

: in Bounded_Sring;

i n Myps. Char act er_Mppi ng)

: inout Bounded Sring;
:in Mps. Charact er_Mappi ng) ;

1 in Bounded Sring;

i n Myps. Char act er_Mppi ng_Functi on)

: inou Bounded Sring;

:in Mps. Charact er_Mppi ng_Functi on);
ans

: in Bounded Sring;

Low :in Positive;
Hgh :in Natural;
By 1 in gring;
Drop > in Truncation := BEror)
return Bounded Sri ng;
procedure Replace Sice (Source : in out Bounded Sring;
Low :in Positive;
Hgh D in Natural;
By >in Sring;
Drop > in Truncation := BEror);
function Insert (Source : in Bounded_Sring;
Before : in Positive;
New ltem: in Sring;
Drop > in Truncation := Eror)
return Bounded_Sri ng;
procedure Insert (Source in out Bounded Sri ng;
Before in Positive;
Newltem: in Sring;
Dop :in Truncation := Eror);

O M A Smith - May not be reproduced without permission

396 Appendix C

function Qrerwite (Source : I'n Bounded _Sring;
Position : in Positive;
Newltem : in Sring;
Drop :in Truncation := BEror)
return Bounded_Sri ng;

procedure Qverwite (Source : inout Bounded Sring;
Position : in Positive;
New ltem : in Sring;
Drop :in Truncation := Eror);

function Delete (Source : in Bounded Sring;
From : in Positive;
Through : in Natural)
return Bounded_Sri ng;

procedure Delete (Source : in out Bounded_Sring;
Fom :in Positive;
Through : in Natural);

--Sring sel ector subprograns

function Trim(Source : in Bounded Sring;
Sde : in TrimEnd)
return Bounded_Sri ng;
procedure Trim(Source : in out Bounded Sring;
Sde :inTrimEnd);

function Trim(Source : in Bounded Sring;
Left : in Mps. Character_Set;
Rght : in Mps. haracter_Set)
return Bounded_Sri ng;

procedure Trim(Source : in out Bounded Sring;
Left :in Mps. Character_Set;
Rght : in Mps. Character_Set);

function Head (Source : in Bounded String;
Qount : in Natura;
Pad :in Character := Space;
Dop : in Truncation := Eror)
return Bounded_Sri ng;
procedure Head (Source : in out Bounded Sring;
Qunt : in Natural;

Pad :in Qharacter := Sace;

Dop : inTruncation :=Eror);
function Tail (Source : in Bounded Sring;

Qount : in Natura;

Pad :in Character := Space;

Dop : in Truncation := Eror)

return Bounded_Sri ng;

procedure Tail (Source : in out Bounded Sring;
Gount : in Natural ;

Pad :in Character := Sace;
Dop : in Truncation :=Eror);
--Sring constructor subprograns
function "*" (Left : in Natural;

Rght : in Character)
return Bounded_Sri ng;

function "*" (Left : in Natural;
Rght : in Sring)
return Bounded_Sri ng;

function "*" (Left : in Natural;

O M A Smith - May not be reproduced without permission

Appendix C

397

Rght : 1 n Bounded Sring)
return Bounded Sri ng;

function Replicate (Gount : in Natural;
Item : in Character;
Dop : in Truncation := Eror)
return Bounded_Sri ng;

function Replicate (Gunt : in Natural;
Item : in Sring;
Dop : in Truncation := Bror)
return Bounded_Sri ng;

function Replicate (Gount : in Natural;
Item : in Bounded Sring;
Dop : in Truncation := Eror)
return Bounded_Sri ng;
private
... --not specified by the | anguage
end Generic_Bounded Lengt h;

end Ada. Srings. Bounded;

C.9 ThePackagel nt erfaces. C

package Interfaces.Cis
pragna Pure(Q;

--Declarations based on Cs <imts.h>

GARBT : constant :
SHAR MN : constant :
SCHAR MAX : constant
UHAR MAX @ constant :

i npl enentati on-defined;, --typically 8

i npl enent ati on-defined; --typically -128
i npl enent ati on-defined; --typically 127
i npl enent ati on-defined; --typically 255

--Sgned and Lhsi gned | ntegers

type int is range inpl enent ati on-defi ned;
type short is range i npl enent ati on-defi ned;
type long is range inpl enentati on-defi ned;

type signed char is range SSHAR MN .. SCHAR MAX
for signed char' S ze use GHARBIT;

type unsi gned is nod i npl enent at i on- def i ned;
type unsigned_short is nod i npl enent ati on-def i ned;
type unsigned long is nod i npl enent ati on-def i ned;

type unsigned char is nod (UTHAR MAXHL);
for unsigned char' S ze use GAR BT,

subtype plain_char is inplenentation-defined;

type ptrdiff_t is range i npl enent ati on-defi ned;

type size t is nod i npl enent ati on-defi ned;

O M A Smith - May not be reproduced without permission

398 Appendix C

--Hoati ng Pol nt
type Cfloat is digits inplenentation-defined;
type doubl e is digits inplenentation-defined;

type long_double is digits inpl enentati on-defi ned;
--Characters and Srings

type char is <inplenentation-defined character type>;

nul : constant char := char'Hrst;

function To C (ltem: in Character) return char;
function To_Ada (Item: in char) return Character;

type char_array is array (size t range <) of aliased char;
pragna Pack(char_array);

for char_array' Gnponent_S ze use CHAR B T;

function Is_ Nul_Terminated (Item: in char_array) return Bool ean;
function To C (ltem :in ˚

Append Nl : in Bool ean : = True)
return char_array;

function To_Ada (ltem : inchar_array;
TrimMNil : in Boolean := True)
return Sring;
procedure To C (ltem :in ˚
Tar get . out char_array;
Gount . out sizet;

Append NUl : in Boolean := True);

procedure To _Ada (ltem > in char_array;
Target : out Sring;
Qount : out Natural;
TrimMNul : in Boolean := True);

--Wde Character and Wde Sring
type wchar _t is inplenentation-defined;
wide nul : constant wchar_t :=wchar_t'Frst;

function To. C (ltem: in Wde _Character) return wchar_t;
function To_Ada (Item: in wchar_t) return Wde_Character;

type wchar_array is array (size t range <) of aliased wchar_t;
pragna Pack(wchar_array);
function Is_ Nul_Terminated (Item: in wchar_array) return Bool ean;
function To C (ltem :in Wde_Sring;
Append_Nul : in Bool ean : = True)
return wchar_array;
function To_Ada (Item : inwchar_array;
TrimMNil : in Boolean := True)

return Wde_String;

procedure To C (ltem :in Wde Sring;
Tar get : out wchar_array;

O M A Smith - May not be reproduced without permission

Appendix C 399

Termnator_BEror : exception;

end Interfaces. G

Gount ©oout

Append_ NIl : in

procedure To_Ada (ltem tin
Target : out

Gount Doout

TrimNil : in

slze t;
Bool ean : = True);
wchar_arr ay;
Wde_Sring;

Nt ural ;

Bool ean : = True);

C.10 The Package Ada. Nuneri cs

package Ada. Nunerics is
pragna Pure(Nunerics);
Argurent_Error : exception;
P : constant :=

e : constant :=

end Ada. Nuneri cs;

3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37511;

2.71828 18284 50045 23536 02874 71352 66249 77572 47093 _69996:;

C.11 The Package Ada.Numerics.generic_elementary functions

generic
type Hoat_Typeis digits <;

function Sgrt (X
function Log (X
function Log (X Base
function Exp (X
function "**" (Left, Rght :

function Sn (X

function Sn (X GQrcle
function Gos (X

function Qs
function Tan (X
function Tan
function ot (X
function Got

function Arcsin (X
function Arcsin
function Arccos (X
functi on Arccos
function Arctan (Y

function Arctan (Y

package Ada. Nunerics. Generic_Henentary Functions is
pragna Pure(Generic_H enentary Functions);

: Hoat_Type' Base)
. Hoat_Type' Base)
. Hoat_Type' Base)
: Hoat_Type' Base)

H oat _Type' Base)

: Hoat_Type' Base)
: Hoat_Type' Base)
: Hoat_Type' Base)
: Hoat_Type' Base)
: Hoat_Type' Base)
. Hoat_Type' Base)
. Hoat_Type' Base)
: Hoat_Type' Base)

: Hoat_Type' Base)
: Hoat_Type' Base)
: H oat _Type' Base)
: Hoat_Type' Base)
: Hoat_Type' Base;

: Hoat_Type Base:= 1.0) return H oat _Type' Base;
. Hoat_Type' Base;
: Hoat_Type' Base := 1.0;
: Hoat_Type' Base)

return H oat_Type' Base;
return Hoat_Type' Base;
return Hoat_Type' Base;
return H oat_Type' Base;
return Hoat_Type' Base;

return H oat_Type' Base;
return H oat_Type' Base;
return Hoat_Type' Base;
return Hoat _Type' Base;
return H oat_Type' Base;
return Hoat_Type' Base;
return Hoat_Type' Base;
return H oat_Type' Base;

return Hoat_Type' Base;
return H oat_Type' Base;
return Hoat_Type' Base;
return Hoat_Type' Base;

return H oat_Type' Base;

O M A Smith - May not be reproduced without permission

400 Appendix C

function Arccot (X . Hoat_Type' Base;

Y : Hoat_Type Base:= 1.0) return H oat _Type' Base;
function Arccot (X . Hoat_Type' Base;

Y : Hoat_Type' Base := 1.0;

Gycl e : Hoat_Type' Base) return H oat_Type' Base;
function S nh (X . Hoat_Type' Base) return Hoat_Type' Base;
function Gosh (X : Hoat_Type' Base) return Hoat _Type' Base;
function Tanh (X . Hoat_Type' Base) return Hoat_Type' Base;
function Goth (X . Hoat_Type' Base) return Hoat_Type' Base;
function Arcsinh (X : R oat _Type' Base) return Hoat _Type' Base;
function Arccosh (X : Hoat_Type' Base) return H oat_Type' Base;
function Arctanh (X . Hoat_Type' Base) return Hoat_Type' Base;
function Arccoth (X : Hoat_Type' Base) return Hoat_Type' Base;

end Ada. Nuneri cs. Generi c_H enentary_Functi ons;

C.12 The Package Ada. Command_| i ne

package Ada. Gonmand Line is
pragna Preel abor at e(Gormand_Li ne) ;

function Argunent_Count return Natural ;

function Argunent (Nunfber : in Positive) return Sring;
function Cormand_Nane return Sring;

type Exit_Satus is inplenentation-defined integer type;

Success : constant Exit_Satus;
Failure : constant Exit_Status;

procedure Set_Exit_Satus (Gode : in Eit_Satus);
private

... --not specified by the | anguage
end Ada. Gonmand_Li ne;

C.13ThePackage Ada. Fi nal i zati on

package Ada. Finalization is
pragma Preel aborate(Finalization);

type Controlled i s abstract tagged private;

procedure Initialize(Oobject : in out Controlled);
pr ocedur e Adj ust (Cpnject : in out Controlled);
procedure Finalize (Object : in out Controlled);

type Limited_Controlled is abstract tagged linmted private;

procedure Initialize(Ooject : in out Limted_Controlled);
procedure Finalize (Object : in out Limted_Controlled);
private

--not specified by the | anguage
end Ada. Fi nal i zati on;

O M A Smith - May not be reproduced without permission

Appendix C 401

C.14 ThePackage Ada. Tags

package Ada. Tags is
type Tag is private;

function Expanded_Name(T : Tag) return String;
function External _Tag(T : Tag) return String;
function Internal _Tag(External : String) return Tag;

Tag_Error : exception;
private

--not specified by the | anguage
end Ada. Tags;

C.15 ThePackage Ada. Cal endar

package Ada. Cal endar is
type Tine is private;

subtype Year_Number is Integer range 1901 .. 2099;
subtype Month_Nunber is Integer range 1 .. 12;

subt ype Day_Nunber is Integer range 1 .. 31;

subtype Day_Duration is Duration range 0.0 .. 86_400.0;

function C ock return Tine;

function Year (Date : Tinme) return Year_Nunber;
function Month (Date : Tine) return Mnth_Nunber;
function Day (Date : Tine) return Day_Nunber;

function Seconds(Date : Time) return Day_Durati on;

procedure Split (Date : in Tine;
Year : out Year_ Nunber;
Mont h : out Mont h_Nunber;
Day : out Day_Nunber;
Seconds : out Day_Duration);
function Time_O (Year : Year_Nunber;
Mont h : Mont h_Nunber ;
Day : Day_Nunber;

Seconds : Day_Duration := 0.0)
return Tine;

O M A Smith - May not be reproduced without permission

402 Appendix C

function "+" (Left Ti ne; Ri ght Duration) return Tine;
function "+" (Left Duration; Right : Tinme) return Tineg;
function "-" (Left Ti me; Ri ght Duration) return Tine;
function "-" (Left Ti me; Ri ght Time) return Duration;
function "<" (Left, Right Time) return Bool ean;
function "<="(Left, Right Ti me) return Bool ean;
function ">" (Left, Right Ti me) return Bool ean;
function ">="(Left, Right Time) return Bool ean;
Ti me_Error excepti on;

private

... --not specified by the | anguage
end Ada. Cal endar;

C.16 ThePackage Syst em

Ti ck

System Name :

M n_I nt
Max_ | nt

package Systemis
pragma Preel abor at e(System ;

- - Syst em Dependent

Max_Bi nary_Mdul us :
Max_Nonbi nary_Modul us :

Max_Base _Digits
Max_Digits

Max_Mant i ssa
Fine_Del ta

const ant

Named Nunbers:

const ant
const ant

const ant
const ant

const ant
const ant

const ant
const ant

const ant

type Nanme is inplenmentation-defined-enuneration-type;
Name : = inpl ement ati on-defi ned;

root _integer' First;
root _i nteger' Last;

i mpl enent ati on- defi ned;
i npl enent ati on-defi ned,;

root _real'Digits;
i npl enent ati on-defi ned,;

i npl enent ati on-defi ned,;
i mpl enent ati on- defi ned;

i mpl enent ati on- defi ned;

O M A Smith - May not be reproduced without permission

Appendix C 403

--Storage-rel ated Decl arati ons:
type Address i s inplenmentation-defined;
Nul | _Address : constant Address;

Storage_Unit : constant
Word_Si ze . const ant
Menory_Size : constant

i mpl erent at i on- defi ned,;
i npl enment ati on-defined * Storage_Unit;
i npl ement ati on-defi ned;

- - Addr ess Conpari son:

function "<" (Left, Right : Address) return Bool ean;

function "<="(Left, Right : Address) return Bool ean;

function ">" (Left, Right : Address) return Bool ean;

function ">="(Left, Right : Address) return Bool ean;

function "=" (Left, Right : Address) return Bool ean;

--function "/=" (Left, Right : Address) return Bool ean;
--"/="is inmplicitly defined

pragma Convention(Intrinsic, "<");

--and so on for all |anguage-defined subprograns in this package

--Q her System Dependent Decl arati ons:
type Bit_Order is (H gh_Order_First, Low Order_First);
Default _Bit_Order : constant Bit_Order;

--Priority-rel ated declarations (see D.1):
subtype Any Priority is Integer range inplenentation-defined;
subtype Priority is Any_Priority

range Any_Priority' First .. inplenentation-defined;
subtype Interrupt_Priority is Any _Priority

range Priority'Last+l .. Any_Priority' Last;

Default _Priority : constant Priority :=
(Priority'First + Priority'Last)/2;

private
. --not specified by the | anguage
end System

O M A Smith - May not be reproduced without permission

AppendIX D: Answersto selected exercises

From chapter 2

A program to print the first 20 numbers.

wi th Ada. Text | o;
use Ada. Text _lo;
procedure Main is
begi n
for I in1 .. 20 |oop
Put (Integer'lmage(|)); New_Line;
end | oop;
end Mai n;

A program to print the 8 times table.

wi th Ada. Text | o;
use Ada. Text _lo;
procedure Main is
begi n
for I inl1 .. 12 |oop
Put(" 8 * "); Put(Integer'lmage(l)); Put("
Put (Integer' Image(1*8)); New_Line;
end | oop;
end Mai n;

A program to print numbersin the Fibonacci series.

wi th Ada. Text _| o;
use Ada. Text _lo;
procedure Main is

First, Second, Next : Integer;
begi n

First := 0;

Second : =1

Put (I nt ege,r' I mage(1)); New_Line;
whil e Second < 10000 | oop
Put (I nteger'lmage(Second)); New_Line;

Next := First + Second;
First := Second;
Second : = Next;
end | oop;
end Mai n;

A program to print a character table.

O M A Smith - May not be reproduced without permission

Appendix D 405

wi th Ada. Text | o;
use Ada. Text _lo;
procedure Main is
begi n
for 1 in 32 .. 127 |oop
Put ("Character "); Put(Character'Val (I));

Put(" is represented by code "); Put(Integer'l|nage(l));
New_Li ne;
end | oop;
end Mai n;

From chapter 3

A program to print an arbitrary timetableintherange 1 .. 20.

with Ada. Text _| o, Ada.|nteger_Text_Io;
use Ada. Text_lo, Ada.lnteger_Text_Io;
procedure Main is
subtype Valid_Tinmes_Table is Integer range 1 .. 20;
Tabl e, Last : Integer;
begi n
if Argument_Count >= 1 then
Get (Argunent (1), Table, Last);
if Table in Valid_Ti mes_Tabl e then
Put ("The "); Put(Table, Wdth=>2);
Put (" times table is"); New_Line;
for I in1 .. 12 |loop
Put (Table, Wdth=>2); Put(" * ");

Put(I, Wdth=>2); Put(" = ");
Put(|*Table, Wdth=>3); New_Li ne;
end | oop;
el se
Put (" Nurmber not valid"); New_Line;
end if;
el se
Put ("No argunent specified"); New_Line;
end if;
end Mai n;

A program to determine if anumber is prime or not.

O M A Smith - May not be reproduced without permission

406 Appendix D

with Ada. Text _l o, Ada.|nteger_Text_Io;
use Ada.Text _|o, Ada.lnteger_Text |o;
procedure Main is
Num : | nteger;
begi n
Put (" Pl ease enter nunber : "); Get(Num);
Put (" Nurmber is ");
if Numin Positive then

for 1 in 2 .. Num1l | oop
if (Numl)*I = Num then
Put ("not ");
exit;
end if;
end | oop;
Put ("prinme"); New_Line;
el se
Put ("Require a positive nunber"); New_Li ne;
end if;
end Main;

A program to covert atemperature in Fahrenheit to centigrade.

wi th Ada. Text _l o, Ada.I|nteger_Text_Io;
use Ada.Text _l|o, Ada.lnteger_Text |o;
procedure Main is
subtype Centigrade is Float range -32.0/1.8 .. 212.0/1.8;
subtype Fahrenheit is Float range 0.0 .. 212.0;
Tenp . Float;
begi n
Put ("Pl ease enter tenperature in Fahrenheit ");
Get(Tenp);
if Temp in Fahrenheit then
Put (" Tenperature in Centigrade is ");
Put((Tenp -32.0) / 1.8, Exp=>0, Aft=>2); New_Line;
el se
Put (" Tenperature not valid"); New_Line;
end if;
end Mai n;

A program to print student marks as grades.

O M A Smith - May not be reproduced without permission

Appendix D 407

with Ada. Text _l o, Ada.|nteger_Text_Io;
use Ada.Text _|o, Ada.lnteger_Text |o;
procedure Main is
Name_Length : constant Positive := 20;
type Nanme_Range is range 1 .. Nane_Length;
Ch : Character;
Mark: | nteger;
begi n
while not End_O _File | oop
for | in Name_Range | oop
Get (Ch); Put(Ch);
end | oop;
Get (Mark);
case Mark is

when O .. 39 => Put("F");
when 40 .. 49 => Put("D");
when 50 .. 59 => Put("C");
when 60 .. 69 => Put("B");
when 70 ..100 => Put ("A");
when ot hers => Put ("Invalid data");

end case;

Ski p_Li ne; New_Li ne;

end | oop;
end Mai n;

From chapter 4

A program to print statistics on the number of different types of character in afile.

with Ada. Text | o, Ada.lnteger_Text_Io;
use Ada.Text _|o, Ada.lnteger_Text |o;
procedure Main is
type Char is (Digit, Punctuation, Letter, OQher_Ch);

function What _|s_Char(Ch:in Character) return Char is

begi n
case Ch is
when 'a'" .. 'z'" | "A" .. '"Z" =>return Letter;
when ‘0" .. '9' => return Digit;
when " ," | .ttt]t => return Punctuation;
when ot hers => return O her_Ch;
end case;

end What |s_Char;

No_Letters : Natural := 0;

No_Digits : Natural := 0;

No Punct Chs : Natural := 0O;

No_Qther_Chs : Natural := 0;

Ch : Character;
begi n

O M A Smith - May not be reproduced without permission

408 Appendix D
while not End_O _File | oop
while not End_Of _Line |oop
Get(Ch);
case What _Is_Char(Ch) is
when Letter => No_Letters := No_Letters + 1;
when Digit => No_Digits := No_Digits + 1;
when Punctuation => No_Punct_Chs := No_Punct_Chs + 1,
when O her _Ch => No_Oher_Chs := No_OQher_Chs + 1;
end case;
end | oop;
Ski p_Li ne;
end | oop;
Put ("Letters are "); Put(No_Letters); New_Line;
Put("Digits are "); Put(No_Digits); New_Line;
Put ("Punctuation chs are "); Put(No_Punct_Chs); New_Line;
Put ("Qt her chs are "); Put(No_Punct_Chs); New_Line;
end Mai n;
Note: This only works for the English character set.

A program to print the average of three rainfall readings.

with Ada. Text _|l o, Ada.|nteger_Text_Io;
use Ada. Text _lo, Ada.lnteger_Text _|Io;
procedure Main is
procedure Order3(A/ B,C.in out Float) is
procedure Order2(F,S:in out Float) is
Tnp : Float;
begin
if F> S then
Tmp :=F, F:=S, S:= Tnp,
end if;
end O der2;
begi n
Oder2(A B); --SL? (a, b, correct order)
Oder2(B, C); --?2 2?2 L (c is largest)
Oder2(A B); --S ML (a, b, c ordered)
end Order 3;
Fi rst, Second, Third : Float;
begi n
Put ("I nput 3 rainfall reading ");
Get(First); Get(Second); Get(Third); --Data
Put ("Rai nfall average is D I
Put ((First+Second+Third)/3.0, Exp=>0, Aft=>2); --Average
New_Li ne;
O der3(First, Second, Third); --Order
Put ("Data val ues (sorted) are : "); --List
Put(First, Exp=>0, Aft=>2); Put(" ");
Put (Second, Exp=>0, Aft=>2); Put(" ");
Put (Third, Exp=>0, Aft=>2); Put(" ");
New_Li ne;
end Main;

From chapter 5

A classPer f or mance that represents the number of seats at a cinema performance.

O M A Smith - May not be reproduced without permission

Appendix D 409

package C ass_Performance is

type Performance is private;
subtype Money is Float;

procedure Book_Seats(The:in out Performance; N.in Natural);
procedure Cancel (The:in out Performance; N in Natural);
function Sales(The:in Performance) return Mney;

function Seats_Free(The:in Perfornance) return Natural;

private
Max_Seats : constant Natural := 200;
Seat _Price: constant Mney = 4.50;
type Performance is record
Seats_Left : Natural := Max_Seats;

end record;
end Cl ass_Performance;

package body C ass_Performance is

procedure Book_Seats(The:in out Performance; N:.in Natural) is
begi n
if The.Seats_Left >= N then

The. Seats _Left := The. Seats_Left - N;
end if;
end Book_Seats;

procedure Cancel (The:in out Perfornmance; N in Natural) is
begi n

The. Seats_Left := The. Seats_Left + N,
end Cancel ;

function Sales(The:in Performance) return Mney is
begi n

return Fl oat (Max_Seats-The. Seats_Left) * Seat Price;
end Sal es;

function Seats_Free(The:in Performance) return Natural is
begi n

return The. Seats_Left;
end Seats_Free;

end Cl ass_Performance;

A program to deal with the day-to-day administration for a cinemawhich has three performances.

O M A Smith - May not be reproduced without permission

410 Appendix D

procedure Main is

begin
return Res;
end Money_| mage;

begi n
| oop

case Event(Screen) is
when M1 =>

Book_Seats(Per, Tickets);
el se

end if;
when M 2 =>

if Tickets > 0 then
Cancel (Per, Tickets);

with Ada. Text | o, Ada.Float Text lo, Class Performance, C ass_Tui;
use Ada. Text_lo, Ada.Float_Text lo, Cass_Performance, C ass_Tui;

procedure Process(Per:in out Performance; Name:in String) is
function Money_Inmage(Min Mney) return String is
Res : String(1 .. 10); --String of 10 characters
Put (Res, M Aft=>2, Exp=>0); --2 digits - NO exp

Screen : Tui; --The TU screen
Tickets : Integer; --Tickets bei ng processed

Message(Screen, "Performance is " & Name);
Menu(Screen, "Book", "Cancel", "Seats free", "Sales");

- - Book

Di al og(Screen, "Nunber of seats to book", Tickets);
if Tickets>0 and then Tickets<=Seats_Free(Per) then

Message(Screen, "Not a valid nunmber of tickets");

- -Cancel

Di al og(Screen, "Nunber of seats to return", Tickets);

when M Quit => exit;
when ot hers => Message(Mai n_Menu,
end case;
end | oop;
end Mai n;

el se
Message(Screen, "Not a valid nunber of tickets");
end if;
when M 3 => --Free
Message(Screen, "Nunber of seats free is" &
I nteger' | mage(Seats_Free(Per)));
when M 4 => --Val ue
Message(Screen, "Value of seats sold is £" &
Money_| mage(Sal es(Per)));
when M Quit => --Exit
exit;
end case;
end | oop;
end Process;
Afternoon, Early_Evening, Evening : Perfornance;
Mai n_Menu : Tui;
begi n
| oop
Menu(Mai n_Menu, "Afternoon", "Early Evening", "Evening", "");
case Event(Main_Menu) is
when M 1 => Process(Afternoon, "Afternoon");
when M 2 => Process(Early_Evening, "Early evening");
when M 3 => Process(Eveni ng, "Evening");

"Try again");

From chapter 6

A fragment of code showing a data structure that represents a computer system.

O M A Smith - May not be reproduced without permission

Appendix D 411

decl are
Kb : constant := 1; --In Kilobyte units
M : constant := 1024; --In Kilobyte units
Gb : constant := 1024* \b; --In Kilobyte units

type Mai n_Menory
type Cache_Menory
type Di sk_Menory
type Video_Menory
type Conputer
type Network

is range 0 .. 64*M;
is range 0 .. 2*M;
is range 0 .. 16*Ch;
is range 0 .. 8*M;
is (Pc, Wrkstation, Miultinedia);
is (Either, Ring);
type Conmput er _Systen(Type_Of : Computer:=Pc) is record
Mai n : Mai n_Menory; --1n Megabytes
Cache: Cache_Menory; --In Kil obytes
Di sk : Di sk_Menory; --1n Megabyt es
case Type O is
when Workstation =>
Connecti on . Network;
when Multinedia =>
Di spl ay_Menory: Vi deo_Menory;

when Pc =>
nul | ;
end case;
end record;
My_Conput er: Conput er _Syst en{Pc) ;
At _Wor k : Conputer_System
begi n
My_Computer := (Pc, 256*My, 512*Kb, 18*CGb);
g\t_WJrk = (Pc, 128*My, 512*Kb, 6*CGb);
end;

Note: Kb, Mb, and Gb are scaled so that the number is representable.

From chapter 9

package Pack_Types is
subtype Money is Float range 0.0 .. Float'Last;
subtype Hours is Float range 0.0 .. 24.0*7.0;
Tax : constant Float := 0.8;

end Pack_Types;

with Pack_Types; use Pack_Types;
package C ass_Enmp_Pay is

type Enp_Pay is tagged private;

function Pay(The:in Enp_Pay) return Mney;
procedure Reset(The:in out Enp_Pay);

function Hours_Worked(The:in Enp_Pay) return Hours;
function Pay Rate(The:in Enp_Pay) return Money;

private
type Enp_Pay is tagged record
Worked : Hours := 0.0; --Hours worked in week
Rat e : Money := 0.0; --Rate per hour
end record;

end C ass_Enp_Pay;

procedure Set_Hourly_Rate(The:in out Enp_Pay; R in Mney);
procedure Add_Hours_Worked(The:in out Enp_Pay; H: in Hours);

O M A Smith - May not be reproduced without permission

412 Appendix D

package body Cl ass_Enp_Pay is

procedure Set_Hourly_ Rate(The:in out Enp_Pay; R in Mney) is
begi n

The. Rate := R
end Set _Hourly_Rate;

procedure Add_Hours_Worked(The:in out Enp_Pay; H in Hours) is
begi n

The. Wrked : = The. Wrked + H;
end Add_Hour s_Wor ked,;

function Pay(The:in Enp_Pay) return Mney is
begi n

return The. Rate * The. Wirked * Tax;
end Pay;

procedure Reset(The:in out Enp_Pay) is
begi n

The. Rate := 0.0; The. Wrked := 0.0;
end Reset;

function Hours_Worked(The:in Enp_Pay) return Hours is
begi n

return The. Wor ked;
end Hours_ Worked;
function Pay Rate(The:in Enp_Pay) return Money is
begi n

return The. Rat e;
end Pay_Rat e;

end d ass_Enp_Pay;

wi th Pack_Types, O ass_Enp_Pay;
use Pack_Types, O ass_Enp_Pay;
package Cl ass_Better_Enp_Pay is

type Better_ Enp_Pay is new Enp_Pay with private;

procedure Set_Overtine_Pay(The:in out Better_ Enmp_Pay;
R in Money);

procedure Nornmal _Pay Hours(The:in out Better_ Enmp_Pay;
H: in Hours);

function Pay(The:in Better_Enp_Pay) return Mney;

private
type Better_Enp_Pay is new Enp_Pay with record
= 0.0; --Normal pay hours
= 0.0;

--Overtine rate

Normal _Hours : Hours :
Over _Tinme_Pay : Money :
end record;
end C ass_Better_ Enp_Pay;

O M A Smith - May not be reproduced without permission

Appendix D 413

package body Cl ass_Better_Enmp_Pay is

procedure Set_Overtine_Pay(The:in out Better_ Enmp_Pay;
R in Mney) is
begi n
The. Over _Time_Pay := R;
end Set_Overtine_Pay;

procedure Nornmal _Pay Hours(The:in out Better_ Enmp_Pay;
Hin Hours) is
begi n
The. Normal _Hours := H;
end Nor nal _Pay_Hours;

function Pay(The:in Better_Enp_Pay) return Mney is
Cet : Mney;
begi n
i f Hours_Worked(The) > The. Nornmal Hours then
Get := The. Normal _Hours * Pay_ Rate(The) +
(Hour s_Wér ked(The) - The. Nor mal _Hour s) * The. Over _Ti ne_Pay;
return Get * Tax;
el se
return Pay(Enp_Pay(The));
end if;
end Pay;

end C ass_Better_Enp_Pay;

procedure Main is

M ke : Enp_Pay;
Corinna : Better_Enp_Pay;
begi n

Set _Hourly_ Rate(M ke, 10.00);

Add_Hours_Worked(M ke, 40.0);

Put ("M ke gets "); Put(Pay(Mke), Exp=>0, Aft=>2);
New_Li ne;

Set _Hourly_Rate(Corinna, 10.00);

Set _Overtinme_Pay(Corinna, 11.00);

Nor mal _Pay_Hours(Corinna, 30.0);

Add_Hour s_Wor ked(Corinna, 40.0);

Put ("Corinna gets : "); Put(Pay(Corinna), Exp=>0, Aft=>2);
New_Li ne;
end Mai n;

with Ada. Text | o, Ada.Float_Text _lo, Cass_Enp_Pay, Cass_Better_ Enp_Pay;
use Ada.Text_lo, Ada.Float_Text _lo, dass_Enp_Pay, d ass_Better_ Enp_Pay;

From chapter 13

A program to use a generic data store. The specification for the class Storeis

O M A Smith - May not be reproduced without permission

414 Appendix D

generic
type Store_lndex is private; - -
type Store_Elenent is private; - -
package C ass_Store i s
type Store is limted private; - -NO copyi ng
Not _There, Full : exception;

procedure Add (The:in out Store;
I ndex:in Store_ | ndex;
Itemin Store_El enment);
function Deliver(The:in Store;
Index:in Store_lndex)
return Store_El enent;
private
Max_Store : constant := 10;
type Store_R Index is range 0 .. Max_Store;
subtype Store_R Range is Store_R Index range 1 .. Max_Store;
type Store_Record is record

I ndex: Store_ | ndex; - -1 ndex
Item: Store_El ement; --Data item
end record;

type Store_Array is array(Store_R Range) of Store_Record;
type Store is limted record

Data : Store_Array;

Itens: Store_R Index := 0;
end record;

end d ass_Store;

A possible implementation of the Class Storeis:

package body Cl ass_Store is

procedure Add (The:in out Store;
I ndex: in Store_Index;
Itemin Store_Elenment) is

begi n
if The.ltenms < Max_Store then
The.ltens := The.ltens + 1;
The. Data(The.ltens) := (Index, ltem);
el se
rai se Full;
end if;
end Add;

function Deliver(The:in Store;
I ndex: in Store_Il ndex)
return Store_Elenment is
begi n
for 1 in 1 .. Store_R Range(Max_Store) | oop
i f The.Data(l).Index = Index then
return The.Data(l).ltem
end if;
end | oop;
rai se Not There;
end Deliver;
end Cd ass_Store;

package Pack_Types is
subtype Nane is String(1..5);
end Pack_Types;

O M A Smith - May not be reproduced without permission

The instantiation of a store package to hold student

Appendix D 415

names and exam marksis:

with Cass_Store, Pack_Types;
package C ass_Store_Int_Str is

new C ass_Store(Pack_Types. Nane, Int

eger);

A simpletest program for this packageis:

with Ada. Text _| o, Ada.lnteger_Text _|o,
use Ada. Text_lo, Ada.lnteger_Text_I|o,
procedure Main is

Marks : Store;
begi n

Add(Marks, "Andy ", 50);

Add(Marks, "Bob ", 65);

Add(Marks, "dark", 73);

Add(Marks, "Dave ", 54);

Put (" Mark for Bob is ");

Put (Deliver(Marks, "Bob "), Wdth=>

Put ("Mark for Dave is ");

Put (Deliver(Marks, "Dave "), Wdth=>
end Main;

Class_Store_Int_Str;
Class_Store_Int_Str;

3); New_Line;

3); New_Line;

From chapter 14

A gqueue implemented using dynamically allocated storage. The specification of the classQueue:

wi th Ada. Finalization;
use Ada. Finalization;
generic

type T is private;
package d ass_Queue i s

Queue_Error: exception;
procedure Add(The:in out Queue;
procedure Sub(The:in out Queue;

private
type Node;
type P_Node is access Node;
pragma Control |l ed(P_Node); - -\
type Node is record
Item T;
P_Next P_Node;
end record;

end C ass_Queue;

--Can specify any type

type Queue is new Limted_Controlled with private;

Iltemin T);
Itemout T);
procedure Finalize(The:in out Queue);

--Mutual Iy recursive def
--Pointer to a Queue

do deal | ocati on

--Node hol ds the data
--The stored item
- - Next

in list

type Queue is new Limted_Controlled with record

Head P_Node := null; --Head of Queue

Tai | P_Node := null; --Tail of Queue

No_Of : Natural:= 0; --Nunber in queue
end record;

The implementation of the classQueue.

O M A Smith - May not be reproduced without permission

416 Appendix D

wi th Unchecked_Deal | ocati on;
package body C ass_Queue i s

procedure Dispose is

if The.No. O > 0 then

Item .= The. Head. | t em
Tnp : = The. Head;
The. Head : = The. Head. P_Next ;
Di spose(Tnp);
The.No O := The.No O - 1;

el se
rai se Queue_Error;

end if;

end Sub;

new Unchecked_Deal | ocati on(Node, P_Node);
procedure Add(The:in out Queue; Itemin T) is
Tnp : P_Node := new Node' (Item null);
begi n
if The.No O > 0 then
The. Tai | . P_Next := Tnp; --Chain in
el se
The. Head 1= Tnp; -- Al so head
end if;
The. Tai | = Tnp; -- New Tai l
The. No_Of = The.No_Of + 1; --Inc no.
end Add;
procedure Sub(The:in out Queue; Item:out T) is
Tnp : P_Node;
begi n

--Recovered item
--Node finished with
--new head

--Free storage

--1 less in queue

--Error

Discard : T;
begi n
for 1 in 1 .. The.No_O | oop
Sub(The, Discard);
end | oop;

end Finali ze;

end O ass_Queue;

procedure Finalize(The:in out Queue) is

--Free storage

The instantiation of an integer instance of the class Queue.

with O ass_Queue;
package C ass_Queue_| nt

is new Cl ass_Queue(l nteger);

A small test program to test the class Queue.

O M A Smith - May not be reproduced without permission

Appendix D 417

with Ada. Text _|l o, Ada.Integer_Text_lo, C ass_Queue_lnt;
use Ada.Text_lo, Ada.lnteger_Text_lo, C ass_Queue_Int;
procedure Main is

Nurmber _Queue : Queue; --Queue of nunbers

Acti on : Character; --Action

Nunber . Integer; --Nunber processed
begi n

while not End_OF _File | oop
whil e not End_O _Line | oop
begi n
Get(Action);
case Action is --Process action
when '+ =>
Get (Nunber); Add(Nunmber_Queue, Nunber) ;

when '-' =>
Sub(Nunber _Queue, Nunber) ;

when ot hers =>
Put ("I nvalid action"); New_Line;
end case;
exception
when Queue_Error =>
Put (" Exception Queue_error"); New_Line;
when Data Error =>
Put ("Not a nunber"); New_Li ne;
when End_Error =>
Put (" Unexpected end of file"); New_ Line; exit;
end;
end | oop;
Ski p_Li ne;
end | oop;
end Main;

Put ("add nunber = "); Put(Number); New_Line;

Put ("renmove nunmber = "); Put (Nunber); New_Line;

From chapter 19

A task type which allows repeated calculations of afactorial value to be madeis:

package Pack_Factorial is

end Task_Factori al ;
end Pack_Factorial ;

task type Task_Factorial is --Specification
entry Calculate(F.in Natural); --Rendezvous
entry Deliver(Res:out Natural); - - Rendezvous
entry Finish; - - Rendezvous

O M A Smith - May not be reproduced without permission

418 Appendix D

package body Pack_Factorial is
task body Task_Factorial is -- I npl ement ati on
Factorial : Natural
Answer : Natural := 1; --Initial val ue
begi n
| oop
sel ect --Store in buffer
accept Calculate(F:in Natural) do --Factoria
Factorial := F;
end Cal cul at e;
Answer = 1;
begi n
for I in 2 .. Factorial |oop --Cal cul ate
Answer = Answer * |;
end | oop;
exception
when Constraint_Error =>
Answer := 0;
end;
accept Deliver(Res:out Natural) do --Return answer
Res : = Answer,
end Deliver;

or --Cet frombuffer
accept Finish; --Fi ni shed
exit;
end sel ect;
end | oop;

end Task_Factori al
end Pack_Factorial;

A short test program for thistask is:

with Ada. Text _lo, Ada.lnteger_Text_lo, Pack_Factorial;
use Ada. Text | o, Ada.lnteger_Text_lo, Pack_Factorial;
procedure Main is

Fac . Task_Factorial ; --Factorial task

Num . Integer; --To caclul ate

Answer : | nteger; --Result of calculation
begi n

while not End_O _File | oop
whil e not End_Of _Line |oop
Get (Num);
Fac. Cal cul ate(Num);
Put ("Factorial "); Put(Num Wdth=>2); Put(" is ");
Fac. Del i ver (Answer);
Put (Answer, Wdth=> 2); New_Li ne
end | oop;
Ski p_Li ne
end | oop
Fac. Fi ni sh; --Term nate task
end Mai n;

O M A Smith - May not be reproduced without permission

References

Intermetrics (1995) Ada 95 Rational, Intermetrics, Inc, Cambridge, Massachusetts.

Intermetrics (1995) Ada 95 Reference Manual , Intermetrics, Inc, Cambridge, Massachusetts.

Taylor, B. (1995) Ada 95 Compatibility Guide in Ada Yearbook 1995 (Ed Mark Ratcliffe), |OS press, pp. 260-
313.

Whitaker, W.A. (1993) Ada- The Project. ACM SIGPLAN Notices, 28(3), 299-331.

O M A Smith - May not be reproduced without permission

| ndex

-, 54 Digits, 373
& operator, 119 First', 371
* 53 Float'Digits, 39
** B4 Float'First.i.attribute
. Float'L ast, 39
case statement, 32 Float'Last, 39
/, 53 Float'Size.i.attribute
/=, 56 Float'Digits, 39
| Integer'First.i.attribute
case statement, 32 Integer'Last, 38
+, 54 Integer'Last, 38
<, 56 Integer'Size, 38
<=, 56 Last', 372
=, 56 Length', 372
> 56 Max', 371
>=, 56 Min', 371
abstract class, 153 Model_epsilon', 373
accept, 292 Pos', 306
access, 216 Pred', 372
al, 211, 216 Pred’, 306
Class, 233 Range, 372
constant, 216 Safe first', 373
value of afunction, 223 Safe last', 373
access constant, 211 Storage size', 372
actual parameter, 64 Succ', 372
Ada Tag', 228
case sensitivity, 26 Terminated', 372
format of aprogram, 26 Unchecked Access’, 225
adjust, 255, 267 vad’, 306
assignment, 267 atributes
aggregate on adiscrete object, 372
record, 95 on afloating point object and type, 372
aliased on ascalar object and type, 372
example, 209 on atask object and type, 372
al on an array, 104, 371
access, 211, 216 base class, 148
alocator, 212 bitwise operator
example, 212 and, 57
and, 56 or, 57
and then, 56 Boolean
append example, 56, 57
tofile, 276 case, 31
array child library, 166
initializing, 115 example, 167
slice, 118 generic, 205
unconstrained, 117 visibility, 169
array dynamic, 119 class, 80
arrays, 102 abstract, 153
assignment base, 148
adjust, 267 derived, 148
attribute hiding the structure, 220
Access', 209 instance attribute, 79
Callable, 372 instance method, 79
Class, 231 UML notation, 21, 78

O M A Smith - May not be reproduced without permission

‘class, 233
Class
attribute, 152
method, 152
collection
heterogeneous, 232
Command line
arguments, 34
compile-time
consistency check, 49
composition
UML notation, 20
conflict
use of namesin package, 82
constant
access, 216
data structure, 95
declaration, 40
typed, 40
constant Integer, 30
constrained
record, 99
constrained and unconstrained types
scalar, 48
construct
declare, 45
controlled
adjust, 255
finalization, 255
controlled object, 159
adjust, 267
example, 160
finalize, 161
initialize, 161
conversion
derived -> base class, 239
derived to baseclass, 152
Float to Integer, 43
Integer to Float, 43
scalar types, 40
view, 230
converting
base class -> derived class, 240
copy
deep, 261
input to output, 33
create
file, 275
Currency converter, 327
datastructure
constant, 95
datastructures
access to members, 94
record, 94
data_error
exception, 183
declaration

I ndex

tentative, 213
declare
construct, 45
deep copy, 261
delay
accept, 301
derived class, 148
visibility rules, 152
design
identifying objects, 128
discriminant
default value, 97
record structure, 96
downcasting
example, 239
dynamic allocation of storage, 212
dynamic array, 119
dynamic binding, 228
else, 28
select, 301
elsif, 29
encapsulation, 74
end_error
exception, 183
end_of _file, 33, 34, 35
end_of _line, 33, 34
enumeration, 50
Character, 51
io, 273
exception
Constraint_error, 375
data error, 183
Data _error, 376
end_error, 183
End_error, 376
example, 183
Mode_error, 376
name_error, 275
Name_error, 186, 376
others, 184
name of, 184
program_error, 375
Status_error, 186, 376
Storage_error, 375
Use_error, 376
exit, 31
finalization, 159
Control |l ed, 162
Limted_Controll ed, 162
finalize, 267
first'
attribute array, 104
fixed
io, 273
float
io, 273
Float, 38

421

O M A Smith - May not be reproduced without permission

422 Appendix D

for, 29
formal parameter, 64
function, 60
accessvalue, 223
local variables, 61
program unit, 60
fusion, 128
generic
child library, 205
formal subprograms, 198
inheritance, 206
instantiation, 191, 199
package, 195
procedure, 191
procedure example, 193
with, 198, 199
guard to entry, 298
heterogeneous collections, 232
hiding base class methods, 163
identifying objects, 128
if, 28
in, 54
parameter, 64, 66
inout
parameter, 64, 66
inheritance, 147
generic, 206

initialization & finalization, 159

multiple, 156

UML notation, 23
initialization, 159

Control | ed, 162

Limted_Controll ed, 162

using
assignment, 85
discriminant, 84

initializing

array, 115
input

character, 33
input output

detailed examples, 273
inspector, 82
instance

method, 79
Instance

attribute, 79
instantiation

generic function, 191

generic package, 199
integer

io, 273
Integer

constant, 30

intermediate resultsin expression, 47

io
append tofile, 276

createfile, 275
of datastructures, 277
openfile, 275
iteration
printing list, 214
iterator for list, 249
last'
attribute array, 104
length'
attribute array, 104
Lexical levels
declare, 359
example, 357
wholesin visibility, 359
library package
unchecked_deallocation, 217
limited
record, 100
limited private, 83
list, 249
local variables, 61
loop, 31
message, 74
methodol ogy
fusion, 128
mixed langauge
program, 362
multidimensional arrays, 113
multiple inheritance, 156
mutator, 82
name_error
exception, 275
natural
subtype, 50
new_line, 33
not, 57
not in, 54
object, 74
exampleof use, 75
UML notation, 20, 21
Observable, 241, 242
Observe-observer
implementation, 242
specification, 242
observe-observer pattern, 240
Observer, 241
open
file, 275
operator
dyadic, 53
monadic, 54
&,119
* 53
* % , 54
., 94
/,53
/=, 56

O M A Smith - May not be reproduced without permission

dyadic, 53
monadic, 54
<, 56
<=, 56
=, 56
> 56
>=, 56
and, 56, 57
and then, 56
in, 54
mod, 53
not, 57
not in, 54
or, 56, 57
or else, 56
overloading, 171
rem, 53
or, 56
or (select), 300
or else, 56
others
case statement, 31
exception, 184
out
parameter, 64, 66
output
string, 32
overloading, 67
operators, 171
renames, 68
package
asaclass, 80
child library, 166
example
Class_account, 220
Class_account_ot, 160
Class hoard, 109, 111, 138
Class_board (TUI), 321
Class _building, 235
Class cdll, 137
Class_counter, 136
Class _dialog, 349
Class_histogram, 105
Class_input_manager, 335
Class_interest_account, 150
Class list, 250, 252, 253
Class_menu, 351
Class_menu_title, 354
Class_named_account, 157
Class_object_rc, 265
Class_Office, 230
Class piggy_bank, 123
Class player, 144
Class rational, 172
Class_Restricted_account, 163
Class_room, 229

I ndex

Class_root_window, 335
Class_screen, 135, 333
Class_Set, 269
Class_stack, 187, 195
Class_string, 177
Class tui, 87, 89
Class window, 341
Class_window_control, 336
Pack_factorial, 289
Pack_is_a prime, 289
Pack_md_io, 331
Pack_threads, 296
raw_io, 331
implementation, 76, 78
specification, 76, 77
standard, 81
use, 81
Ada.Characters, 106
with, 81
parameter
actual, 64
by name, 70
by position, 70
default valuesto, 70
formal, 64
in, 64, 66
inout, 64, 66
out, 64, 66
variable number, 69
polymorphism, 228
package names, 237
parameter to procedure, 231
Pos’
attribute, 306
positive
subtype, 50
Pred'
attribute, 306
private, 83
inaclass, 77
procedure, 62
example
sort, 202
program unit, 62
program
case sensitivity, 26
hello world, 25
mixed language, 362
protected type, 296
put
float parameters, 42, 43
i nt eger paraneters,42
range'
attribute array, 104
record
limited, 100
variant, 99

423

O M A Smith - May not be reproduced without permission

424 Appendix D

record aggregate, 95
record structure
discriminant, 96
nested, 96
recursion, 66
printing list, 214
reference counting, 262
renames, 68
rendezvous, 291
representation clause
physical address, 308, 309
specific value enumeration, 306
reverse, 29
root integer, 46
root real, 46
run tinme dispatch, 232
run-time
consistency check, 49
scalar
Image, 41
type hierarchy, 52
scientific notation, 38
select, 300
or, 300
sequentua_io
package, 277
skip_line, 33
dliceof anarray, 118
standard
package, 81
standard types, 375
Statement
accept, 292
case, 31
for, 29
reverse, 29
if, 28
if else, 28
nested, 28
if elsif, 29
loop, 31
exit, 31
select, 300
select delay, 301
select else, 301
when entry, 298
while, 28
storage
dynamic allocation, 212
storage pool, 212
string
type, 118
subprogram
generic, 198
subtype, 45
natural, 50

positive, 50
Succ'
attribute, 306
tagged type, 148
task
exampl e of use, 289
rendezvous, 291
task type, 289
tentative declaration, 213
thread, 289, 290
TUI
skeleton layout, 312
type, 45, 74
protected, 296
tagged, 148
task, 289
the intermediate results, 47
type safety, 44
example, 44
typestring, 118
types
implementation size, 375
UML
classnotation, 21
composition notation, 20
inheritance notation, 23
object notation, 20, 21
unchecked_deallocation, 217
useof, 221
unconstrained
record, 97, 99
unconstrained array, 117
universal integer, 40
use
example, 81
positioning in apackage, 82
usetype, 181
va’
attribute, 306
variant
record, 99
view conversion, 230
visibility
wholes, 359
visibility rules
derived class, 152
when
case statement, 31
while, 28
with
example, 81
generic, 198, 199
positioning in apackage, 82
record extension, 240
WwWw
information, 377

O M A Smith - May not be reproduced without permission

